20 research outputs found
Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales
We present an extension of our recently introduced molecular density
functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619,
2013] to the solvation of hydrophobic solutes of various sizes, going from
angstroms to nanometers. The theory is based on the quadratic expansion of the
excess free energy in terms of two classical density fields, the particle
density and the multipolar polarization density. Its implementation requires as
input a molecular model of water and three measurable bulk properties, namely
the structure factor and the k-dependent longitudinal and transverse dielectric
susceptibilities. The fine three-dimensional water structure around small
hydrophobic molecules is found to be well reproduced. In contrast the computed
solvation free-energies appear overestimated and do not exhibit the correct
qualitative behavior when the hydrophobic solute is grown in size. These
shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by
complementing the functional with a truncated hard-sphere functional acting
beyond quadratic order in density. It makes the resulting functional compatible
with the Van-der-Waals theory of liquid-vapor coexistence at long range.
Compared to available molecular simulations, the approach yields reasonable
solvation structure and free energy of hard or soft spheres of increasing size,
with a correct qualitative transition from a volume-driven to a surface-driven
regime at the nanometer scale.Comment: 24 pages, 8 figure
Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory.
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 2016, 12, 3674], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation theory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wave function, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), and Cr2 dimer with up to a quadruple-ζ basis set with an active space of (12e, 190o). For these systems we were able to obtain better than 1 mHa accuracy with a wall time of merely 55 s, 37 s, and 56 min on 1, 1, and 4 nodes, respectively.S.S. acknowledges the startup package from the University of Colorado. A.A.H. and C.J.U. were supported in part by NSF Grant ACI-1534965
Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method
In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values. Published by AIP Publishing
Solvation free-energy pressure corrections in the three dimensional reference interaction site model
Solvation free energies are efficiently predicted by molecular density functional theory if one corrects the overpressure introduced by the usual homogeneous reference fluid approximation. Sergiievskyi et al. [J. Phys. Chem. Lett. 5, 1935-1942 (2014)] recently derived the rigorous compensation of this excess of pressure (referred as "pressure correction" or PC) and proposed an empirical "ideal gas" supplementary correction (referred as "advanced pressure correction" or PC+) that further enhances the calculated solvation free energies. In a recent paper [M. Misin, M. V. Fedorov, and D. S. Palmer, J. Chem. Phys. 142, 091105 (2015)], those corrections were applied to solvation free energy calculations using the three-dimensional reference interaction site model (3D-RISM). As for classical DFT, PC and PC+ improve greatly the predictions of 3D-RISM, but PC+ is described as decreasing the accuracy. In this article, we derive rigorously the expression of the pressure in 3D-RISM as well as the associated PC and PC+. This provides a consistent way to correct the solvation free-energies calculated by 3D-RISM method. (C) 2015 AIP Publishing LLC
A first-principles investigation of the structural and electrochemical properties of biredox ionic species in acetonitrile
Ab initio molecular dynamics allow understanding of electron transfer reactions for a series of systems involved in redox supercapacitors.</p
A first-principles investigation of the structural and electrochemical properties of biredox ionic species in acetonitrile
International audienceBiredox ionic liquids are a new class of functionalized electrolytes that may play an important role in future capacitive energy storage devices. By allowing additional storage of electrons inside the liquids, they can improve device performance significantly. However current devices employ nanoporous carbons in which the diffusion of the liquid and the adsorption of the ions could be affected by the occurrence of electron-transfer reactions. It is therefore necessary to understand better the thermodynamics and the kinetics of such reactions in biredox ionic liquids. Here we perform ab initio molecular dynamics simulations of both the oxidized and reduced species of several redox-active ionic molecules (used in biredox ionic liquids) dissolved in acetonitrile solvent and compare them with the bare redox molecules. We show that in all the cases, it is necessary to introduce a two Gaussian state model to calculate the reaction free energies accurately. These reaction free energies are only slightly affected by the presence of the IL group on the molecule. We characterize the structure of the solvation shell around the redox active part of the molecules and show that in the case of TEMPO-based molecules strong reorientation effects occur during the oxidation reaction
