51 research outputs found

    \u3cem\u3eIonoSeis\u3c/em\u3e: A Package to Model Coseismic Ionospheric Disturbances

    Get PDF
    We present the framework of the modeling package IonoSeis. This software models Global Navigation Satellite System (GNSS) derived slant total electron content (sTEC) perturbations in the ionosphere due to the interaction of the neutral atmosphere and charged particles in the ionosphere. We use a simplified model to couple the neutral particle momentum into the ionosphere and reconstruct time series of sTEC perturbations that match observed data in both arrival time and perturbation shape. We propagate neutral atmosphere disturbances to ionospheric heights using a three-dimensional ray-tracing code in spherical coordinates called Windy Atmospheric Sonic Propagation (WASP3D), which works for a stationary or non-stationary atmospheric models. The source of the atmosphere perturbation can be an earthquake or volcanic eruption; both couple significant amounts of energy into the atmosphere in the frequency range of a few Millihertz. We demonstrate the output of the code by comparing modeled sTEC perturbation data to the observed perturbation recorded at GNSS station BTNG (Bitung, Indonesia) immediately following the 28 September 2018, Sulawesi-Palu earthquake. With this framework, we provide a software to couple the lithosphere, atmosphere, and ionosphere that can be used to study post-seismic ionospherically-derived signals

    The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Get PDF
    International audienceThe AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations , surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and astheno-sphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations Electronic supplementary material The online version of this article (https ://doi. 1 3 operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth

    Arrival angles of teleseismic fundamental mode Rayleigh waves across the AlpArray

    Get PDF
    The dense AlpArray network allows studying seismic wave propagation with high spatial resolution. Here we introduce an array approach to measure arrival angles of teleseismic Rayleigh waves. The approach combines the advantages of phase correlation as in the two-station method with array beamforming to obtain the phase-velocity vector. 20 earthquakes from the first two years of the AlpArray project are selected, and spatial patterns of arrival-angle deviations across the AlpArray are shown in maps, depending on period and earthquake location. The cause of these intriguing spatial patterns is discussed. A simple wave-propagation modelling example using an isolated anomaly and a Gaussian beam solution suggests that much of the complexity can be explained as a result of wave interference after passing a structural anomaly along the wave paths. This indicates that arrival-angle information constitutes useful additional information on the Earth structure, beyond what is currently used in inversions

    Ambient-noise tomography of the wider Vienna Basin region

    Get PDF
    We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others

    Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion

    Get PDF
    Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides

    Crustal Thinning From Orogen to Back-Arc Basin: The Structure of the Pannonian Basin Region Revealed by P-to-S Converted Seismic Waves

    Get PDF
    We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts

    RITMICA : Risques Telluriques Multiples, Intégrés, sur la Côte d'Azur

    No full text
    International audienc

    Le projet Alparray : voir les Alpes en 3D, de la croûte au manteau

    No full text
    Des millions d'Européens vivent dans les régions alpines et sont affectés par la chaîne de montagne, que ça soit par sa topographie, sa géologie ou les risques naturels qu'elle engendre (séismes, mouvements de terrain). Les géologues ont étudié les Alpes depuis plus de 100 ans, ce qui en fait un laboratoire naturel unique pour produire de la connaissance sur la formation d'une chaîne de montagne et son évolution. Mais, alors que la plupart des concepts qui sous-tendent les recherches actuelles sur les chaînes de montagne sont nés dans les Alpes, la structure de la croûte et du manteau reste mal connue faute d'application des méthodes d'exploration géophysique les plus modernes. L'ambition du projet européen AlpArray est de combler ce manque par l'acquisition de données sismologiques de qualité qui, soumises aux techniques d'analyse les plus modernes lèveront les incertitudes actuelles sur les structures profondes de l'arc alpin

    Le projet Alparray : voir les Alpes en 3D, de la croûte au manteau

    No full text
    Des millions d'Européens vivent dans les régions alpines et sont affectés par la chaîne de montagne, que ça soit par sa topographie, sa géologie ou les risques naturels qu'elle engendre (séismes, mouvements de terrain). Les géologues ont étudié les Alpes depuis plus de 100 ans, ce qui en fait un laboratoire naturel unique pour produire de la connaissance sur la formation d'une chaîne de montagne et son évolution. Mais, alors que la plupart des concepts qui sous-tendent les recherches actuelles sur les chaînes de montagne sont nés dans les Alpes, la structure de la croûte et du manteau reste mal connue faute d'application des méthodes d'exploration géophysique les plus modernes. L'ambition du projet européen AlpArray est de combler ce manque par l'acquisition de données sismologiques de qualité qui, soumises aux techniques d'analyse les plus modernes lèveront les incertitudes actuelles sur les structures profondes de l'arc alpin

    Le projet Alparray : voir les Alpes en 3D, de la croûte au manteau

    No full text
    Des millions d'Européens vivent dans les régions alpines et sont affectés par la chaîne de montagne, que ça soit par sa topographie, sa géologie ou les risques naturels qu'elle engendre (séismes, mouvements de terrain). Les géologues ont étudié les Alpes depuis plus de 100 ans, ce qui en fait un laboratoire naturel unique pour produire de la connaissance sur la formation d'une chaîne de montagne et son évolution. Mais, alors que la plupart des concepts qui sous-tendent les recherches actuelles sur les chaînes de montagne sont nés dans les Alpes, la structure de la croûte et du manteau reste mal connue faute d'application des méthodes d'exploration géophysique les plus modernes. L'ambition du projet européen AlpArray est de combler ce manque par l'acquisition de données sismologiques de qualité qui, soumises aux techniques d'analyse les plus modernes lèveront les incertitudes actuelles sur les structures profondes de l'arc alpin
    corecore