31 research outputs found

    Insight into mosquito GnRH-related neuropeptide receptor specificity revealed through analysis of naturally occurring and synthetic analogs of this neuropeptide family

    Get PDF
    Adipokinetic hormone (AKH), corazonin (CRZ), and the AKH/CRZ-related peptide (ACP) are neuropeptides considered homologous to the vertebrate gonadotropin-releasing hormone (GnRH). All three Aedes aegypti GnRH-related neuropeptide receptors have been characterized and functionally deorphanized. Individually they exhibit high specificity for their native ligands, prompting us to investigate the contribution of ligand structures in conferring receptor specificity for two of these receptors. Here, we designed a series of analogs based on the native ACP sequence and screened them using a heterologous system to identify critical residues required for ACP receptor (ACPR) activation. Analogs lacking the carboxy-terminal amidation, replacing aromatics, as well as truncated analogs were either completely inactive or had very low activities on ACPR. The polar threonine (position 3) and the blocked amino-terminal pyroglutamate are also critical, whereas ACP analogs with alanine substitutions at position 2 (valine), 5 (serine), 6 (arginine), and 7 (aspartate) were less detrimental including the substitution of charged residues. Replacing asparagine (position 9) with an alanine resulted in a 5-fold more active analog. A naturally-occurring ACP analog, with a conserved substitution in position two, was well tolerated yet displayed significantly reduced activity compared to the native mosquito ACP peptide. Chain length contributes to ligand selectivity in this system, since the endogenous octapeptide Aedae-AKH does not activate the ACPR whereas AKH decapeptides show low albeit significant activity. Similarly, we utilized this in vitro heterologous assay approach against an A. aegypti AKH receptor (AKHR-IA) testing carefully selected naturally-occurring AKH analogs from other insects to determine how substitutions of specific residues in the AKH ligand influence AKHR-IA activation. AKH analogs having single substitutions compared to Aedae-AKH revealed position 7 (either serine or asparagine) was well tolerated or had slightly improved activation whereas changes to position 6 (proline) compromised receptor activation by nearly 10-fold. Substitution of position 3 (threonine) or analogs with combinations of substitutions were quite detrimental with a significant decrease in AKHR-IA activation. Collectively, these results advance our understanding of how two GnRH-related systems in A. aegypti sharing the most recent evolutionary origin sustain independence of function and signaling despite their relatively high degree of ligand and receptor homology.York University Librarie

    CAPA neuropeptides and their receptor form an anti-diuretic hormone signalling system in the human disease vector, Aedes aegypti

    Get PDF
    Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian ‘renal’ tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.York University Librarie

    Glycoprotein Hormone Receptor Knockdown Leads to Reduced Reproductive Success in Male Aedes aegypti

    Get PDF
    Glycoprotein hormone receptors mediate a diverse range of physiological functions in vertebrate and invertebrate organisms. The heterodimeric glycoprotein hormone GPA2/GPB5 and its receptor LGR1, constitute a recently discovered invertebrate neuroendocrine signaling system that remains to be functionally characterized. We previously reported that LGR1 is expressed in the testes of adult Aedes aegypti mosquitoes, where its immunoreactivity is particularly regionalized. Here, we show that LGR1 immunoreactivity is associated with the centriole adjunct of spermatids and is observed transiently during spermatogenesis in mosquitoes, where it may act to mediate the regulation of flagellar development. RNA interference to downregulate LGR1 expression was accomplished by feeding mosquito larvae with bacteria that produced LGR1-specific dsRNA, which led to defects in spermatozoa, characterized with shortened flagella. LGR1 knockdown mosquitoes also retained ∼60% less spermatozoa in reproductive organs and demonstrated reduced fertility compared to controls. To date, the endocrine regulation of spermatogenesis in mosquitoes remains an understudied research area. The distribution of LGR1 and detrimental effects of its knockdown on spermatogenesis in A. aegypti indicates that this heterodimeric glycoprotein hormone signaling system contributes significantly to the regulation of male reproductive biology in this important disease-vector

    Anti-diuresis in the Blood-gorging Bug, Rhodnius prolixus: The Role of CAPA Peptides

    No full text
    CAPA-related peptides belong to a family of neuropeptides localized to the central nervous system that can function in diverse roles in the regulation of water and salt homeostasis in insects. These peptides are known to stimulate fluid secretion by Malpighian tubules (MTs) in Dipteran species, thus serving a diuretic function. In contrast, this thesis demonstrates that members of this family of peptides in Rhodnius prolixus serve an anti-diuretic role and have multiple tissue targets, whereby they oppose the activity of diuretic hormones such as serotonin (5-Hydroxytryptamine hydrochloride; 5-HT). I have identified two genes each encoding three peptides in R. prolixus, suggesting this insect is capable of producing a greater number of CAPA-peptides compared to other insects that contain only a single CAPA gene. Interestingly, while the second peptide encoded in each R. prolixus gene (RhoprCAPA-α2/-β2) inhibits the stimulatory effects of serotonin on tissues such as the anterior midgut and Malpighian tubules, it appears the other CAPA-related and pyrokinin-related peptides do not play a major role in inhibiting the effects of serotonin on these tissues. More specifically, serotonin-stimulated fluid secretion by MTs and fluid absorption by the anterior midgut are reduced by the anti-diuretic peptide, RhoprCAPA-α2. In addition, I have also identified a G protein-coupled receptor which likely mediates the anti-diuretic effect associated with RhoprCAPA-α2 and have functionally characterized this receptor in Chinese hamster ovary cells. Spatial transcript expression analysis in fifth-instars reveals a wide distribution of the receptor in tissues associated with the rapid post-gorging diuresis. Thus, my findings suggest that numerous tissues are regulated by the CAPA peptides in R. prolixus. Gene structure and phylogenetic analyses demonstrate that this receptor is the orthologue of the D. melanogaster capa receptor (CG14575) with homologs in other insects. Taken together, my thesis demonstrates that the RhoprCAPA peptides play an integral role in the coordination and maintenance of anti-diuresis in R. prolixus. This mechanism is necessary following the rapid diuresis associated with blood-feeding by this medically-important insect.Ph
    corecore