5 research outputs found

    Opium for the Masses? Conflict-Induced Narcotics Production in Afghanistan

    Full text link
    We show that the recent rise in Afghan opium production is caused by violent conflicts. Violence destroys roads and irrigation, crucial to alternative crops, and weakens local incentives to rebuild infrastructure and enforce law and order. Exploiting a unique data set, we show that Western hostile casualties, our proxy for conflict, have strong impact on subsequent local opium production. This proxy is shown to be exogenous to opium. We exploit the discontinuity at the end of the planting season: Conflicts have strong effects before and no effect after planting, assuring causality. Effects are strongest where government law enforcement is weak

    Deciphering the U-Pb dates of sedimentary phosphates: A complex example from the Upper Cretaceous-Lower Paleogene series in northwestern Morocco

    No full text
    Uranium‑lead geochronology rapidly generates dates of rock deposition/formation with reasonable precision and accuracy using laser ablation inductively coupled plasma mass spectrometry, which is needed for bracketing stratigraphy. However, previous radiometric U-Pb dating of biogenic (i.e., bones and teeth) and sedimentary phosphate minerals have had limited success, probably because of the nanometric to micrometric crystallites that generate open system behavior. Sediment lithification inhibiting trace element exchange between minerals and porewaters and thus forcing phosphorus-rich crystallites to adopt a closed system behavior has been suggested for interpreting U-Pb dating of carbonate fluorapatite (CFA). Despite these insights, what remains lacking is extensive U-Pb CFA dating at the regional scale to test whether several processes influence the timing of U-Pb system closure by inhibiting U and Pb exchanges. Here, we report U-Pb CFA dating from four sampling sites in northwestern Morocco to understand better the meaning of U-Pb dates in CFA. The Upper Cretaceous-Lower Paleogene phosphate series yields anomalously low 207Pb/206Pb initial ratios and young dates ranging from 37.3 ± 2.4 Ma to 22.7 ± 0.7 Ma, which does not agree with the terrestrial lead model composition for Paleogene ages and the known biostratigraphic ages, respectively. We argue that ancient radiogenic Pb from leached polymetallic mineralizations of the regional environment have been incorporated into CFA and that a 25 to 40 Ma-long widespread resetting of the U-Pb system has affected the northwestern Moroccan phosphates. Neither CFA-hosted CO32− concentrations nor rare earth element and yttrium contents indicate post-depositional modifications of the chemical nature of phosphate-bearing rocks. Burial diagenesis promoting sediment lithification is one of the mechanisms that have triggered final closure of the U-Pb system of CFA minerals and, interestingly, the sedimentation rate was probably not a controlling factor. Unexpectedly, U-Pb dates of ∼23 Ma from three stratigraphic levels separated by several million years seem to be concomitant with the regional emersion and generalized continentalization of northwestern Morocco, allowing CFA to behave as a closed system. We conclude that the laser ablation inductively coupled mass spectrometry U-Pb dating of biogenic and sedimentary CFA minerals must be carefully employed to date the timing of fossilization or sediment deposition

    Deciphering the U Pb dates of sedimentary phosphates: A complex example from the Upper Cretaceous-Lower Paleogene series in northwestern Morocco

    No full text
    International audienceUranium‑lead geochronology rapidly generates dates of rock deposition/formation with reasonable precision and accuracy using laser ablation inductively coupled plasma mass spectrometry, which is needed for bracketing stratigraphy. However, previous radiometric Usingle bondPb dating of biogenic (i.e., bones and teeth) and sedimentary phosphate minerals have had limited success, probably because of the nanometric to micrometric crystallites that generate open system behavior. Sediment lithification inhibiting trace element exchange between minerals and porewaters and thus forcing phosphorus-rich crystallites to adopt a closed system behavior has been suggested for interpreting Usingle bondPb dating of carbonate fluorapatite (CFA). Despite these insights, what remains lacking is extensive Usingle bondPb CFA dating at the regional scale to test whether several processes influence the timing of Usingle bondPb system closure by inhibiting U and Pb exchanges. Here, we report Usingle bondPb CFA dating from four sampling sites in northwestern Morocco to understand better the meaning of Usingle bondPb dates in CFA. The Upper Cretaceous-Lower Paleogene phosphate series yields anomalously low 207Pb/206Pb initial ratios and young dates ranging from 37.3 ± 2.4 Ma to 22.7 ± 0.7 Ma, which does not agree with the terrestrial lead model composition for Paleogene ages and the known biostratigraphic ages, respectively. We argue that ancient radiogenic Pb from leached polymetallic mineralizations of the regional environment have been incorporated into CFA and that a 25 to 40 Ma-long widespread resetting of the Usingle bondPb system has affected the northwestern Moroccan phosphates. Neither CFA-hosted CO32− concentrations nor rare earth element and yttrium contents indicate post-depositional modifications of the chemical nature of phosphate-bearing rocks. Burial diagenesis promoting sediment lithification is one of the mechanisms that have triggered final closure of the Usingle bondPb system of CFA minerals and, interestingly, the sedimentation rate was probably not a controlling factor. Unexpectedly, Usingle bondPb dates of ~23 Ma from three stratigraphic levels separated by several million years seem to be concomitant with the regional emersion and generalized continentalization of northwestern Morocco, allowing CFA to behave as a closed system. We conclude that the laser ablation inductively coupled mass spectrometry Usingle bondPb dating of biogenic and sedimentary CFA minerals must be carefully employed to date the timing of fossilization or sediment deposition

    Management and 1-year outcomes of patients with newly diagnosed atrial fibrillation and chronic kidney disease: Results from the prospective garfield-af registry

    No full text
    Background-—Using data from the GARFIELD-AF (Global Anticoagulant Registry in the FIELD–Atrial Fibrillation), we evaluated the impact of chronic kidney disease (CKD) stage on clinical outcomes in patients with newly diagnosed atrial fibrillation (AF). Methods and Results-—GARFIELD-AF is a prospective registry of patients from 35 countries, including patients from Asia (China, India, Japan, Singapore, South Korea, and Thailand). Consecutive patients enrolled (2013–2016) were classified with no, mild, or moderate-to-severe CKD, based on the National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative guidelines. Data on CKD status and outcomes were available for 33 024 of 34 854 patients (including 9491 patients from Asia); 10.9% (n=3613) had moderate-to-severe CKD, 16.9% (n=5595) mild CKD, and 72.1% (n=23 816) no CKD. The use of oral anticoagulants was influenced by stroke risk (ie, post hoc assessment of CHA2DS2-VASc score), but not by CKD stage. The quality of anticoagulant control with vitamin K antagonists did not differ with CKD stage. After adjusting for baseline characteristics and antithrombotic use, both mild and moderate-to-severe CKD were independent risk factors for all-cause mortality. Moderate-to-severe CKD was independently associated with a higher risk of stroke/systemic embolism, major bleeding, new-onset acute coronary syndrome, and new or worsening heart failure. The impact of moderate-to-severe CKD on mortality was significantly greater in patients from Asia than the rest of the world (P=0.001). Conclusions-—In GARFIELD-AF, moderate-to-severe CKD was independently associated with stroke/systemic embolism, major bleeding, and mortality. The effect of moderate-to-severe CKD on mortality was even greater in patients from Asia than the rest of the world

    Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light

    No full text
    Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
    corecore