314 research outputs found

    Robust scaling in fusion science: case study for the L-H power threshold

    Get PDF
    In regression analysis for deriving scaling laws in the context of fusion studies, standard regression methods are usually applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to fusion data. More sophisticated statistical techniques are available, but they are not widely used in the fusion community and, moreover, the predictions by scaling laws may vary significantly depending on the particular regression technique. Therefore we have developed a new regression method, which we call geodesic least squares regression (GLS), that is robust in the presence of significant uncertainty on both the data and the regression model. The method is based on probabilistic modeling of all variables involved in the scaling expression, using adequate probability distributions and a natural similarity measure between them (geodesic distance). In this work we revisit the scaling law for the power threshold for the L-to-H transition in tokamaks, using data from the multi-machine ITPA databases. Depending on model assumptions, OLS can yield different predictions of the power threshold for ITER. In contrast, GLS regression delivers consistent results. Consequently, given the ubiquity and importance of scaling laws and parametric dependence studies in fusion research, GLS regression is proposed as a robust and easily implemented alternative to classic regression techniques

    Visualization of tokamak operational spaces through the projection of data probability distributions

    Get PDF
    Information visualization is becoming an increasingly important tool for making inferences from large and complex data sets describing tokamak operational spaces. Landmark MDS, a computationally efficient information visualization tool, well suited to the properties of fusion data, along with a comprehensive probabilistic data representation framework, is shown to provide a structured visual map of plasma confinement regimes, plasma disruption regions and plasma trajectories. This is aimed at contributing to the understanding of underlying physics of various plasma phenomena, while providing an intuitive tool for plasma monitoring

    EBW technology applied on the ICRF antenna component

    Get PDF
    Central conductor is one of the key components of ion cyclotron ranges of heating antenna, which is usually formed by welding due to the complex structures. High level of welding seam quality and small deformation are very important to central conductor. Electron beam welding (EBW) is suggested as the central conductor welding. To meet EBW requirements and reduce the risk, complex and high level of the accuracy welding fixture have been designed for central conductor EBW. Some samples were manufactured to do test and examination for EBW qualification before central conductor welding. Based on the welding parameters, thermal analysis using finite element method for the welding seam have been carried out. One mockup of central conductor for EBW has been made for proving welding parameters. In addition, some postwelding process were employed after one central conductor EBW. Results of examination and inspection of one central conductor using EBW are presented in this paper

    Full wave propagation modelling in view to integrated ICRH wave coupling/RF sheaths modelling

    Get PDF
    RF sheaths rectification can be the reason for operational limits for Ion Cyclotron Range of Frequencies (ICRF) heating systems via impurity production or excessive heat loads. To simulate this process in realistic geometry, the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code is a minimal set of coupled equations that computes self-consistently wave propagation and DC plasma biasing. The present version of its wave propagation module only deals with the Slow Wave assumed to be the source of RF sheath oscillations. However the ICRF power coupling to the plasma is due to the fast wave (FW). This paper proposes to replace this one wave equation module by a full wave module in either 2D or 3D as a first step towards integrated modelling of RF sheaths and wave coupling. Since the FW is propagative in the main plasma, Perfectly Matched Layers (PMLs) adapted for plasmas were implemented at the inner side of the simulation domain to absorb outgoing waves and tested numerically with tilted BD in Cartesian geometry, by either rotating the cold magnetized plasma dielectric tensors in 2D or rotating the coordinate vector basis in 3D. The PML was further formulated in cylindrical coordinates to account for for the toroidal curvature of the plasma. Toroidal curvature itself does not seem to change much the coupling. A detailed 3D geometrical description of Tore Supra and ASDEX Upgrade (AUG) antennas was included in the coupling code. The full antenna structure was introduced, since its toroidal symmetry with respect to the septum plane is broken (FS bars, toroidal phasing, non-symmetrical structure). Reliable convergence has been obtained with the density profile up to the leading edge of antenna limiters. Parallel electric field maps have been obtained as an input for the present version of SSWICH

    Dimensionless size scaling of intrinsic rotation in DIII-D

    Get PDF
    A dimensionless empirical scaling for intrinsic toroidal rotation is given: M-A similar to beta(N)rho*, where M-A is the toroidal velocity divided by the Alfven velocity, beta(N) is the usual normalized beta value, and rho* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. This scaling establishes the basic magnitude of the intrinsic toroidal rotation, and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed. This scaling has some similarities to existing dimensioned scalings, both the Rice scaling [J. E. Rice et al., Phys. Plasmas 7, 1825 (2000)] and the scaling of Parra et al. [Phys. Rev. Lett. 108, 095001 (2012)]. These relationships are described. Published by AIP Publishing

    Microstructural modifications in tungsten induced by high flux plasma exposure : TEM examination

    Get PDF
    We have performed microstructural characterization using transmission electron microscopy (TEM) techniques to reveal nanometric features in the sub-surface region of tungsten samples exposed to high flux, low energy deuterium plasma. TEM examination revealed formation of a dense dislocation network and dislocation tangles, overall resulting in a strong increase in the dislocation density by at least one order of magnitude as compared to the initial one. Plasma-induced dislocation microstructure vanishes beyond a depth of about 10 mu m from the top of the exposed surface where the dislocation density and its morphology becomes comparable to the reference microstructure. Interstitial edge dislocation loops with Burgers vector a(0)/2 and a(0) were regularly observed within 6 mu m of the sub-surface region of the exposed samples, but absent in the reference material. The presence of these loops points to a co-existence of nanometric D bubbles, growing by loop punching mechanism, and sub-micron deuterium flakes, resulting in the formation of surface blisters, also observed here by scanning electron microscopy

    Discrimination and visualization of ELM types based on a probabilistic description of inter-ELM waiting times

    Get PDF
    Discrimination and visualization of different observed classes of edge-localized plasma instabilities (ELMs), using advanced data analysis techniques has been considered. An automated ELM type classifier which effectively incorporates measurement uncertainties is developed herein and applied to the discrimination of type I and type III ELMs in a set of carbon-wall JET plasmas. The approach involves constructing probability density functions (PDFs) for inter-ELM waiting times and global plasma parameters and then utilizing an effective similarity measure for comparing distributions: the Rao geodesic distance (GD). It is demonstrated that complete probability distributions of plasma parameters contain significantly more information than the measurement values alone, enabling effective discrimination of ELM type

    Improvement of the phase regulation between two amplifiers feeding the inputs of the 3dB combiner in the ASDEX-Upgrade ICRH system

    Get PDF
    The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and the phase in quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system
    corecore