208 research outputs found

    True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    Get PDF
    Nucleotide excision repair (NER) is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α) and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process

    Disección transcripcional del Locus GH del genoma humano

    Get PDF
    El locus de la hormona del crecimiento humano (hGH) presenta variaciones en los niveles de expre- sión en algunos de sus componentes hasta en tres órdenes de magnitud. Este estudio comparó deleciones (140 a 3,100 pb) y la fuerza de transcrip- ción de todos los promotores del locus con un gen reportero (hGH-N) mediante expresión transitoria. Los promotores largos tuvieron mayor expresión, paradójicamente hGH-V fue uno de los más acti- vos. Se detectaron tres elementos promotores ne- gativos y se evaluó la activación transcripcional di- ferencial para los diferentes promotores, mediante su respuesta a la acción de hormonas y cotransfec- ción de vectores expresores de factores transcripcionales

    A 3' → 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription

    Get PDF
    XPB is a subunit of the basal transcription factor TFIIH, which is also involved in nucleotide excision repair (NER) and potentially in cell cycle regulation. A frameshift mutation in the 3'-end of the XPB gene is responsible for a concurrence of two disorders: xeroderma pigmentosum (XP) and Cockayne's syndrome (CS). We have isolated TFIIH from cells derived from a patient (XP11BE) who carries this frameshift mutation (TFI-IHmut) and from the mother of this patient (TFIIHwt) to determine the biochemical consequences of the mutation. Although identical in composition and stoichiometry to TFIIHwt, TFIIHmut shows a reduced 3' → 5' XPB helicase activity. A decrease in helicase and DNA-dependent ATPase activities was also observed with the mutated recombinant XPB protein. The XPB mutation causes a severe NER defect. In addition, we provide evidence for a decrease in basal transcription activity in vitro. The latter defect may provide an explanation for many of the XP and CS symptoms that are difficult to rationalize based solely on an NER defect. Thus, this work presents the first detailed analysis of a naturally occurring mutation in a basal transcription factor and supports the concept that the combined XP/CS clinical entity is actually the result of a combined transcription/repair deficiency.</p

    A 3' → 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription

    Get PDF
    XPB is a subunit of the basal transcription factor TFIIH, which is also involved in nucleotide excision repair (NER) and potentially in cell cycle regulation. A frameshift mutation in the 3'-end of the XPB gene is responsible for a concurrence of two disorders: xeroderma pigmentosum (XP) and Cockayne's syndrome (CS). We have isolated TFIIH from cells derived from a patient (XP11BE) who carries this frameshift mutation (TFI-IHmut) and from the mother of this patient (TFIIHwt) to determine the biochemical consequences of the mutation. Although identical in composition and stoichiometry to TFIIHwt, TFIIHmut shows a reduced 3' → 5' XPB helicase activity. A decrease in helicase and DNA-dependent ATPase activities was also observed with the mutated recombinant XPB protein. The XPB mutation causes a severe NER defect. In addition, we provide evidence for a decrease in basal transcription activity in vitro. The latter defect may provide an explanation for many of the XP and CS symptoms that are difficult to rationalize based solely on an NER defect. Thus, this work presents the first detailed analysis of a naturally occurring mutation in a basal transcription factor and supports the concept that the combined XP/CS clinical entity is actually the result of a combined transcription/repair deficiency.</p

    Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein

    Get PDF
    TFIIH is a high molecular weight complex with a remarkable dual function in nucleotide excision repair and initiation of RNA polymerase II transcription. Mutations in the largest subunits, the XPB and XPD helicases, are associated with three inherited disorders: xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy. To facilitate the purification and biochemical characterization of this intricate complex, we generated a cell line stably expressing tagged XPB, allowing the

    XPF-Dependent DNA Breaks and RNA Polymerase II Arrest Induced by Antitumor DNA Interstrand Crosslinking-Mimetic Alkaloids

    Get PDF
    SummaryTrabectedin and Zalypsis are two potent anticancer tetrahydroisoquinoline alkaloids that can form a covalent bond with the amino group of a guanine in selected triplets of DNA duplexes and eventually give rise to double-strand breaks. Using well-defined in vitro and in vivo assays, we show that the resulting DNA adducts stimulate, in a concentration-dependent manner, cleavage by the XPF/ERCC1 nuclease on the strand opposite to that bonded by the drug. They also inhibit RNA synthesis by: (1) preventing binding of transcription factors like Sp1 to DNA, and (2) arresting elongating RNA polymerase II at the same nucleotide position regardless of the strand they are located on. Structural models provide a rationale for these findings and highlight the similarity between this type of DNA modification and an interstrand crosslink

    DNA damage stabilizes interaction of CSB with the transcription elongation machinery

    Get PDF
    The Cockayne syndrome B (CSB) protein is essential for transcription-coupled DNA repair (TCR), which is dependent on RNA polymerase II elongation. TCR is required to quickly remove the cytotoxic transcription-blocking DNA lesions. Functional GFP-tagged CSB, expressed at physiological levels, was homogeneously dispersed throughout the nucleoplasm in addition to bright nuclear foci and nucleolar accumulation. Photobleaching studies showed that GFP-CSB, as part of a high molecular weight complex, transiently interacts with the transcription machinery. Upon (DNA damage-induced) transcription arrest CSB binding these interactions are prolonged, most likely reflecting actual engagement of CSB in TCR. These findings are consistent with a model in which CSB monitors progression of transcription by regularly probing elongation complexes and becomes more tightly associated to these complexes when TCR is active

    The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex

    Get PDF
    Transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living primary fibroblasts, that both proteins are required for TCR and for recovery of RNA synthesis after UV damage in vivo but not for basal transcription itself. Furthermore, immunodepletion showed that CSB is not required for in vitro NER or transcription. Its central role in TCR suggests that CSB interacts with other repair and transcription proteins. Gel filtration of repair- and transcription-competent whole cell extracts provided evidence that CSB and CSA are part of large complexes of different sizes. Unexpectedly, there was no detectable association of CSB with several candidate NER and transcription proteins. However, a minor but significant portion (10-15%) of RNA polymerase II was found to be tightly associated with CSB. We conclude that within cell-free extracts, CSB is not stably associated with the majority of core NER or transcription components, but is part of a distinct complex involving RNA polymerase II. These findings suggest that CSB is implicated in, but not essential for, transcription, and support the idea that Cockayne syndrome is due to a combined repair and transcription deficiency

    Influenza virus NS1 protein binds cellular DNA to block transcription of antiviral genes

    Get PDF
    Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress

    Get PDF
    Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair
    corecore