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Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and
inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular
dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-
mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA
virus inhibits cellular transcription to escape antiviral response and secure its replication.
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1. Introduction

Influenza A viruses (IAVs) are important human pathogens that
cause global epidemics and pandemics (www.who.int). It is estimated
that IAVs are responsible for up to 500,000 deaths a year [1]. The
successful recovery from viral infection largely depends on efficient
activation of innate and adaptive immune responses [2–4]. Innate im-
mune responses are triggered by cellular Toll-like receptors (TLR3 and
TLR7), which recognize viral patterns upon IAV entry in the cell [4–6].
These pattern recognition receptors (PRRs) activate transcription of
interferon genes (IFNB1, IL28A, IL29, IL28B, IFNG, IFNA1, IFNA2, and
IFNW1), whose products mediate expression of interferon stimulated
genes (ISGs) [7–10]. Following transcription of ISGs, their protein prod-
ucts, such asRIG-I (DDX58),MDA5 (IFIH1), and PKR (EIF2AK2) recognize
viral RNA and its replication intermediates to trigger activation of innate
immune responses and apoptosis, as well as to inhibit protein synthesis
[11–13]. In addition, the ribonucleases encoded by other ISGs (OASL,
OAS1, ISG20) degrade viral RNA [14–16]. Moreover, E3-ligases and
nov@helsinki.fi (D.E. Kainov).
ubiquitin-like molecules encoded by HERC5, Trim25, and ISG15 ISGs
modify influenza and cellular proteins to alter their cellular functions
[17,18]. Simultaneously, cytokines produced from IL1B, IL8, IL6,
CXCL10, CCL5 and some other ISGs are secreted from infected cells to
alarm bystander uninfected cells of a viral infection as well as to attract
immune cells to the site of infection [2,4,19]. Some of these cytokines
are processed into secretory forms by the inflammasome, which is
activated by IFN-inducible GTPases, such as GBP1, GBP4, GBP5, MX1
and MX2 [20–22]. Moreover, COX2, IDO and 25HC encoded by PTGS2,
IDO, and CH25H ISGs catalyse the production of prostaglandin H2,
kynurenine, and oxysterol 25-hydroxycholesterol, respectively, which
act as immuno- and neuromediators [19,23–25]. Thus, antiviral re-
sponse consist of transcriptional, post-transcriptional, translational
and post-translational events resulting in the clearance of infection.

To counteract the cellular defence and secure viral replication, IAV
utilizes its non-structural NS1 protein, which is synthesized by infected
cells only few hours after infection. NS1 interacts with replication inter-
mediates of viral RNA to hinder these molecules from recognition by
cellular PRRs [26]. It also binds RIGI, PKR, TRIM25, ISG15, GBP1 and
other ISG products, to inhibit their functions [27,28]. However, NS1 in-
teractions with these host antiviral proteins are virus- or host cell-
specific [27–30]. We hypothesized that NS1 could also block the
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transcription of innate antiviral genes by binding cellular DNA to pre-
vent the loading of cellular transcriptionalmachinery (Fig. 1A andB). In-
deed, we demonstrate that NS1 binds cellular dsDNA, antagonizes RNA
polymerase II (Pol II) recruitment to the DNA and, consequently, in-
hibits the transcription of IFNs and ISGs. Thus, our study offers a previ-
ously undescribed mechanism, by which RNA virus manipulates
cellular transcription to downregulate the antiviral responses.

2. Materials and methods

2.1. Viruses and cells

Influenza A/WSN/33(H1N1) viruses expressing wild type (WSNWT)
or R38A/K41A mutant NS1 (WSNRK/AA) were generated using WSN
eight-plasmid-based reverse genetics system in HEK and Vero cells
as described previously [31]. We sequenced the viral NS1 genes of
WSNRK/AA and WSNWT viruses to verify the authenticity of the muta-
tions. Viruses were titrated in Madin-Darby canine kidney epithelial
(MDCK) cells using plaque assay as described [32].We obtained smaller
plaques and approximately 100 times lower titres for WSNRK/AA virus
than for WSNWT (Fig. S1). The viruses were stored at−80 °C.

MDCK, human embryonic epithelial cells (HEK293T) and African
green monkey kidney epithelial cells (Vero) were grown in Dulbecco
modified Eagle's medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 2 mM L-glutamine (Lonza; Basel, Switzerland),
50 U/ml penicillin-streptomycin mix (PenStrep, Lonza) and 10% fetal
bovine serum (FBS; Gibco, Paisley, UK). Human telomerase reverse
transcriptase-immortalized retinal pigment (RPE) cells were grown in
DMEM-F12mediumsupplementedwith 50U/ml PenStrep, 2mML-glu-
tamine, 10% FBS, and 0,25% sodium bicarbonate (Sigma-Aldrich). The
cells were propagated at 37 °C in 5% CO2.

2.2. Transfection of RPE cells with siRNA

RPE cells were cultured to 80% confluency in 24 well plates and
transfected with 100 nM siGenome SMARTpool or ON-TARGETplus
non-targeting control siRNA (Table S1; Dharmacon, Lafayette, CO,
USA) using Lipofectamine® RNAiMAX Reagent (Thermo Fisher Scientif-
ic). Importantly, some of these siRNA have been validated in previous
[33,34] and in the present study (Fig. S2). 24 h after transfections, the
cells were infected with WSNWT, WSNRK/AA viruses or mock infected.
8 h after infection, the levels of genes and proteins of interest were
analysed using RT-qPCRs and immunoblotting, respectively.
Fig. 1. Influenza NS1 through R38 and K41 may bind dsDNA to inhibit transcription of antiv
responses in influenza A virus-infected cells. IAV infection stimulates the transcription of IFNs
transcription of IFNs and ISGs by binding to cellular dsDNA. Representative PRRs, IFNs an
interferon genes, ISGs- interferon stimulated genes. B. Hypothetical model of NS1 RBD-dsDN
used to build this model.
2.3. Infection of RPE cells with WSNWT and WSNRK/AA viruses

The growth medium of RPE cells was changed to the virus growth
medium (VGM) containing 0.2% BSA (Sigma-Aldrich), 2 mM L-gluta-
mine, 0.348% NaHCO3 and 1 μg/ml l-1-tosylamido-2-phenylethyl
chloromethyl ketone-trypsin (TPCK)-trypsin (Sigma-Aldrich) in
DMEM-F12. The cells were infected with WSNWT, WSNRK/AA viruses
or mock.

2.4. Gene expression profiling

RNA was extracted from WSNWT-, WSNRK/AA- or mock-infected RPE
cells at 8 h.p.i. using RNeasy Plus mini kit (Qiagen, Germany). Gene ex-
pression profilingwas done using IlluminaHumanHT-12 v4 Expression
BeadChip Kit according to manufacturer's recommendation as de-
scribed previously [35]. Raw microarray data were normalized using
the BeadArray and Limma packages from Bioconductor suite for R. Nor-
malized data were further processed using a variance and intensity fil-
ter. Genes differentially expressed between samples and controls were
determined using the Limma package. Benjamini-Hocberg multiple
testing correction testing method was used to filter out differentially
expressed genes based on a q-value threshold (q b 0.05). Filtered data
were sorted by logarithmic fold change (log2Fc). The gene-expression
data was deposited to Gene Expression Omnibus (GEO accessory num-
ber: GSE65699). Gene set enrichment analysis was performed using
open-source software (www.broadinstitute.org/gsea).

2.5. Quantitative PCR

Quantitative PCRs were done on the Lightcycler 480 using Fast SYBR
Green Master Mix (Roche, USA). The following sets of primers were
used for detection of specific genes or cDNA: EML4 (forward: 5′-TGGC
TTCAGTGCAACTCTT-3′, reverse: 5′-AATCTCCATCACTGCCCATC-3′),
IFNB1 promotor (forward: 5′-GTCAGTAGAATCCACGGATACAG-3′ and
reverse: 5′-CTTGGGAGAAAGCAAAGGAAAG-3′) and exon (forward: 5′-
GCCGCATTGACCATCTATGA-3′ and reverse: 5′-GCCAGGAGGTTCTCAA
CAATAG-3′), IFNA1 (forward: 5′-ATGGCAACCAGTTCCAGAAG-3′, re-
verse: 5′-CATCCCAAGCAGCAGATGAA-3′), IFNA16 (forward: 5′-GACT
CACTTCTATAACCACCACAA-3′, reverse: 5′-TAGTGCCTGCACAGGTAAAC-
3′), IL6 (forward: 5′-TCATCACTGGTCTTTTGG-3′, reverse: 5′-CTCTGG
CTTGTTCCTCAC-3′), CXCL1 (forward: 5′-TGAGCATCGCTTAGGAGA-3′,
reverse: 5′-AGGACAGTGTGCAGGTAG-3′), and IL29 (forward: 5′-AGGC
TGAGCTGGCCCTGA-3′, reverse: 5′-GGTGTGAAGGGGCTGGTC-3′). The
relative gene expression differences were calculated as described
iral genes. A. Novel hypothetical mechanism of action of influenza NS1 against antiviral
and ISGs, which inhibit virus replication. Newly synthetized influenza NS1 protein blocks
d ISGs are shown. IAV - influenza A virus, PRRs - pattern recognition receptors, IFNs-
A complex. The structures of NS1 RBD (PDBID: 2ZKO) and B-form dsDNA (4W9M) were

http://www.broadinstitute.org/gsea
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previously [36] and the results were represented as relative units (RU).
Technical triplicates of each sample were performed on the same qPCR
plate and non-templates and non-reverse transcriptase samples were
analysed as negative controls. Statistical significance (p b 0.05) of the
quantitation results was evaluated with t-test. Benjamini-Hochberg
method was used to adjust the p-values.

2.6. Immuno-fluorescence analysis (IFA)

RPE cellswere infectedwithWSNWT (moi 1) orWSNRK/AA (moi 1) vi-
ruses or they were mock-infected. After 10 h of infection the cells were
fixed with 4% paraformaldehyde (PFA) in phosphate buffered saline
(PBS), then permeabilized and blocked in the BP buffer (10% Bovine
serum albumin (BSA) and 0.1% Triton X-100 in PBS) supplemented
with 5% goat serum (Life Technologies, USA). Primary rabbit anti-NS1
antibodies (32) were added followed by secondary goat anti-rabbit an-
tibodies with an Alexa488 fluorophore (Life Technologies, USA) in BP
buffer, nuclei were counterstained with DAPI, and the slides were
mounted with Prolong Gold anti-fade reagent (Life Technologies,
USA). Images were captured with Nikon 90i microscope and processed
with NIS elements AR software.

2.7. Chromatin immunoprecipitation

ChIP experiments were performed on RPE cells infected with
WSNWT (moi 1), WSNRK/AA (moi 1) or mock as previously described
(34). Briefly, after cross-linking with formaldehyde at room tempera-
ture, chromatin was prepared, sonicated on ice using Bioruptor
(Diagenode, Philadelphia, PA, USA) andpre-cleared. Sampleswere incu-
bated with the antibody and then pulled down using protein G Sepha-
rose beads. After extensive washes the protein-DNA complexes were
eluted, the cross-linking was heat-reverted. DNA was purified with
QIAquick PCR purification kit (Qiagen) and quantified by PCR with
primers targeting promotor or exon region of IFNB1 gene was
performed.

2.8. Protein electrophoresis and immunoblotting

Cellswere lysedwith a 2× Laemmli loading buffer (4% sodiumdode-
cyl sulphate, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol
blue and 0.125MTris HCl, pH 6.8). Proteinswere resolved in 4–20% gra-
dient SDS-polyacrylamide gel (Biorad, Hercules, USA) at 150 V for
50min. The gels were stained using Coomassie blue or immunoblotted.
For immunoblotting, proteins were transferred from SDS-PAGE onto
Immobilon-P membranes (Millipore, MA, USA). The membranes were
blocked with 5% non-fat milk or 5% BSA (Sigma-Aldrich) in TBST,
stained with different primary antibodies overnight, followed by sec-
ondaryHRP-conjugated antibody labelling and detection by chemilumi-
nescence. The primary antibodies used in this study were anti-RNA
polymerase II CTD repeat YSPTSPS antibody (1:1000 dilution in 5%
BSA-TBST; Abcam, 8WG16), goat anti-TLR3 (1:1000 dilution in 5%
BSA-TBST; sc8692, SantaCruz), rabbit anti-MAVS (1:1000 dilution in
5% BSA-TBST; from I. J. laboratory), guinea pig anti-MDA5 (1:250
dilution in 5% milk-TBST; from I. J. laboratory), and rabbit anti-IAV
NS1 antibody (1:5000 dilution in 5% BSA-TBST; from I. J. laboratory).
The secondary HRP antibodies (anti-guinea pig, anti-goat and anti-
rabbit) were from Dako and used as 1:1000 dilution. To confirm equal
sample loading the membranes were stripped and labelled with anti-
GAPDH antibody (1:1000 dilution in 5% milk-PBST, Santa Cruz, sc-
47724).

2.9. Enzyme-linked immunosorbent assay (ELISA)

The levels of CXCL10, TNFα, and IFNλ in the cell supernatants
were assayed with ELISA (PBL Interferon Source) as described
previously [37].
2.10. Mass spectrometry

Five 175 cm2 plates of RPE cells were infected with WSNWT (moi
1) orWSNRK/AA (moi 3) viruses or were leftmock-infected. 10 h post in-
fection the media was removed. 400 μl of lysis buffer (20 mM Tris-HCl,
pH 7.5, 100mMNaCl and 1% Tryton-X100)was added to each plate. The
lysates were collected and centrifuged at 14,000 rpm at 4C for 10 min.
Insoluble fractions were resuspended in 2 ml buffer containing 20 mM
Tris-HCl, pH 7.5, 100 mM NaCl and 0.1 mg/ml RNAse A (Qiagene) and
incubated on ice for 1 h. The mixtures were centrifuged at 14,000 rpm
at 4C for 10 min. Insoluble fractions were resuspended in 2 ml lyses
buffer and centrifuged again to remove remaining RNAse and cleaved
RNA. Insoluble fractions were resuspended in 2 ml buffer containing
20 mM Tris-HCl, pH 7.5 and 600 mMNaCl. Insoluble fractions were ob-
tained by centrifugation, resuspended in 2 ml buffer containing 20 mM
Tris-HCl, pH 7.5 and 100 mMNaCl and sonicated for 20 min (2 s pulse/
2 s pause; amplitude 25%, 20 kHz, 750 W). Proteins were resolved on
SDS page.

Identification and quantification of proteins of “insoluble fraction”
wasdoneusingquadri-plex iTRAQ (isobaric tag for relative and absolute
quantitation) labelling combined with liquid chromatography-tandem
mass spectrometry (LC–MS/MS) analysis as described previously [38].
In brief, protein alkylation, trypsin digestion and labelling of the
resulting peptides were done according to manufacturer's instructions
(AB Sciex). Labelled peptides were fractionated by strong cation ex-
change chromatography and each fraction containing labelled peptides
was analysed twice with nano-LC-ESI-MS/MS using Ultimate 3000
nano-LC (Dionex) and QSTAR Elite hybrid quadrupole time-of-flight-
MS (AB Sciex). MS data were acquired automatically using Analyst QS
2.0 software. Protein identification and relative quantitation was per-
formed using ProteinPilot 4.0 software (AB Sciex). Data files from both
technical replicates of an iTRAQ sample set were processed together.
The search database was a self-built combination of Uniprot Human
protein sequences and Uniprot ssRNA negative-strand virus sequences
(both form the release 55.0, 02/08). The search criteria were: cysteine
alkylation with MMTS, trypsin digestion, biological modifications
allowed, thorough search and detected protein threshold of 95% confi-
dence (Unused ProtScore N1.3). Additionally, automatic bias correction
was used. False discovery rates were calculated using a concatenated
normal and reversed sequence database.

2.11. In vitro assays

Wild type (NS1WT) and R38A, K41Amutant (NS1RK/AA) of NS1 of in-
fluenza A/chicken/Nigeria/OG10/2007(H5N1) virus were produced in
E. coli BL21(DE3) cells and purified to homogeneity as described previ-
ously [39]. Importantly, we also attempted but did not succeed to purify
wild type proteins of A/WSN/1933, A/Udorn/1972, and many other IAV
strains because they were insoluble when overexpressed in E. coli
BL21(DE3) cells.

Run-off transcription assay was performed using highly-purified
TFIIB, TFIIE, TFIIF, TFIIH, TBP, RNA polymerase II and NS1WT or
NS1RK/AA protein as described previously [40].

EMSA assay was performed with recombinant purified NS1WT or
NS1RK/AA proteins and dsDNA fragments as described previously [41].
Briefly, the synthetic 199 bp-long dsDNA (DNA-199) was produced by
PCR using two oligonucleotides (forward 5′-ATGGATCCAAACACTGTGT
CA-3′, reverse 5′-CTCCACTATTTGCTTTCCA-3′) and pHW188-NS plas-
mid as a template (29). The synthetic 76 bp-long dsDNA (DNA-SELEX)
was produced as described in [42]. Hundred ng of dsDNAwas incubated
with purified recombinant proteins for 15min on ice. 10× loading buff-
er (20mMTris-HCl pH 8.6, 50mMNaCl, 10% glycerol) was added to the
samples and the samples were resolved in 1% agarose gel containing
ethidium bromide in a TAE buffer (40 mM Tris-base, 20 mM acetic
acid, 1 mM EDTA). Protein-DNA-SELEX complex were excised from
the gel, and DNA was purified using Qiaquick gene extraction kit
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(Qiagen). The DNA was sequenced with SR3 primer (5′-GTTCAGAGTTC
TACAGTC-3′) using ABI3730xl DNA Analyzer and standard Sanger
method, adjusted for sequencing of short fragments.

Microscale thermophoresis assay was performed with recombinant
highly-purified NS1WT or NS1RK/AA proteins and fluorescently labeled
synthetic 199 bp-long dsDNA (DNA-199). DNA-199 was produced by
PCR using oligonucleotides containing a cyanine fluorophore covalently
linked to the 5′ ends and pHW188-NS plasmid as a template. 10 pM of
Cy5-labeled synthetic dsDNA was incubated with different concentra-
tions of purified proteins for 5min on ice. Differences in thermophoretic
properties of free and protein-bound dsDNA were determined using
Monolith NT.115 instrument (NanoTemper Technologies, Munich,
Germany).

3. Results

3.1. NS1 inhibits transcription of antiviral genes in virus-infected cells

It has been previously shown that NS1 through R38 and K41
residues binds dsRNA to sequester it from recognition by PRRs [15,43,
44]. We hypothesized that via the same residues, NS1 could also bind
dsDNA to inhibit transcription of IFNs and ISGs (Fig. 1B). To test this
hypothesis, we used wild-type influenza A/WSN/33(H1N1) virus
(WSNWT) and its variant (WSNRK/AA), which expresses NS1 protein
with R38A and K31A [31]. We infected human RPE cells with WSNWT

or WSNRK/AA viruses, and used the uninfected cells (mock) as a control.
8 h post infection we analysed the expression of cellular genes using
Fig. 2. Influenza NS1 through R38 and K41 inhibits transcription of antiviral genes. A. RPE cells
RNA was isolated and subjected to genome-wide transcription profiling. Three independent e
shown on a heatmap. Each cell is colored according to the average of the log2-transformed an
samples with the average of mock controls subtracted. B. RPE cells were treated as for panel
NFKB1 and OASL) and one housekeeping (EML4) gene was analysed using RT-qPCRs. The
experiments. Statistically significant (p b 0.05) differences in gene expression between virus-
cell culture supernatants were collected at 24 h post-infection, and cytokine levels were determ
DNA microarray. We found that infection with WSNWT virus acti-
vated the expression of 33 genes more than eight-fold, whereas
WSNRK/AA virus induced expression of 88 genes over the same
fold, including 31 transcripts that were the same as those up-
regulated by WSNWT (Fig. 2A). We validated our microarray results
using RT-qPCR and ELISA (Fig. 2B and C). These results suggested
that WSN virus via R38A and K41 residues of NS1 was able to
down-regulate the transcription of antiviral genes in infected
human RPE cells.

Importantly, we obtained similar results using humanmacrophages
previously [31]. In particular, infection of human macrophages with
WSNWT virus up-regulated the expression of 57 IFNs and ISGs more
than eight-fold, whereasWSNRK/AA virus infection activated the expres-
sion of 93 genes (N8-fold), including 32 of WSNWT-up-regulated genes.
These data suggested that WSN virus NS1 protein, via R38A and K41
residues was able to control the transcription of antiviral genes in
both infected human macrophages and RPE cells. However, human
macrophages derived fromdonorswith different genetic and epigenetic
background possessed slightly different responses to infection with
WSN virus (Fig. S3) [29,31,45]. To exclude these variations, we used
only RPE cells in our next experiments.

Gene set enrichment analysis showed that the majority of differen-
tially expressed genes were involved in antiviral responses. To confirm
this, we suppressed the expression of some of these genes using specific
siRNAs before infection. We demonstrated that IFNB1, EIF2AK2 (PKR),
IDO, BAMBI, CH25H, DDX60L, OAS1, OAS3, PTGS2 (COX2), and IFIH1
(MDA5) as well as TLR3 and MAVS (used as controls) were necessary
weremock-, WSNWT-, orWSNRK/AA- infected. 10 h post infection cells were collected, total
xperiments were performed. Differentially expressed genes were selected (p b 0.05) and
d quantile-normalized expression values (log2 fold change N3 and b−3) of the triplicate
A, total RNA was isolated at 10 hpi, and the expression of 5 antiviral (CCL5, IL6, IFNA16,
data points are mean values and error bars represent the SD from three independent
and mock-infected cells are indicated with asterisks. C. Cells were treated as for panel A,
ined using ELISA.
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to limit transcription and replication of viralM1 RNAs uponWSNWT and
WSNRK/AA virus infections (Fig. 3A). Interestingly, TLR3 but not TLR7was
required for transcription of IFNB1, which triggered the expression of a
set of ISGs in response to IAV infection (Fig. 3B). Thus, IAV via R38 and
K41 of NS1 attenuated transcription of antiviral IFNs and ISGs.
3.2. NS1 locates to chromatin to suppress transcription of antiviral genes

Next we asked how does NS1 control the transcription of antiviral
genes. We first investigated the cellular localization of NS1WT and
NS1RK/AA. We infected RPE cells with WSNWT or WSNRK/AA viruses and
after 10 h post infection examined the distribution of NS1WT and
NS1RK/AA by immunofluorescence. These experiments showed that
bothNS1WT andNS1RK/AAwere locatedmainly in the nucleus of infected
cells (Fig. 4A).

We then purified NS1-associated factors from mock-, WSNWT-, and
WSNRK/AA-infected RPE cells. Cells were lysed with Triton X-100, and
cell extracts were subjected to fractionations, high-RNAse A and high-
salt treatments followed by SDS-PAGE, immunobloting, and agarose
gel electrophoresis analysis. Surprisingly, the majority of NS1WT and
NS1RK/AA were found in insoluble fraction together with cellular DNA,
RNA Pol II and histones (Fig. 4B). This indicates that NS1 can be co-
purified with chromatin factors from virus-infected cells.
Fig. 3. SiRNA experiment revealed several cellular factors, which restrict bothWSNWT andWSN
siRNA. 24 h later cells were infectedwithWSNWT (moi 1) orWSNRK/AA (moi 1) viruses ormock
later by RT-qPCRs. Statistically significant (p b 0.05) differences in gene expression between no
We next extracted proteins from the insoluble fractions and
analysed them by quantitative mass spectrometry (iTRAQ LC–MS/MS).
We found that histones H3.2, H1.2, H1.5, H2A.1D and other
chromatin-associated proteins were enriched in NS1WT and NS1RK/AA-
containing insoluble fractions in comparison to mock (Fig. 4C;
Table S2). Of note, some differences in the levels of H2A1D, YBOX-1,
H3.2 and other proteins were seen between NS1WT- and NS1RK/AA-
containing fractions. These data suggest that WSNWT and WSNRK/AA

infections alter protein composition of chromatin fractions.
Next we investigated the consequences of the altered histone

composition on NS1 interaction with specific gene regions during IAV
infection. For this, RPE cells were mock-infected or infected with either
WSNWT orWSNRK/AA viruses for 8 h. NS1- and Pol II-associated DNAwas
extracted from chromatin fractions of infected and non-infected cells.
The promoter and exon regions of IFNB1 were analysed using q-PCR.
We found that NS1WT was enriched on the promoter and exon region
of IFNB1 in WSNWT infected cells, whereas Pol II was enriched on the
same IFNB1 regions in WSNRK/AA infected cells (Fig. 4D). These results
suggest that wild type NS1 can prevent the association of Pol II with
IFNB1 gene during virus infection. Altogether, these resultsmay indicate
that upon IAV infection PRRs mediated chromatin remodelling to
activate the expression of antiviral genes and suppress general tran-
scription, and NS1 upon expression suppresses transcription of some
antiviral genes, depending on chromatin context.
RK/AA virus replication in RPE cells. A, B. RPE cells were transfected with specific or control
-infected. Expression levels of (A) viral M1 and (B) cellular IFNB1 genewere analysed 10 h
n-targeted siRNA control and targeted siRNA condition are indicated with asterisks.



Fig. 4. Functional influenza A virus NS1 protein associates with chromatin and inhibits the transcription of cellular IFNB1 gene in IAV-infected RPE cells. A. Immunostaining of NS1 in RPE
cells infectedwithmock,WSNWT, orWSNRK/AA viruses. Cells were infectedwithmock,WSNWT (moi 1), orWSNRK/AA (moi 3) viruses,fixed at 10 h post-infection, and stainedwith anti-NS1
antibody and DAPI. Scale bars, 10 μm. B. Purification of NS1-enreached fractions from WSNWT or WSNRK/AA infected RPE cells. Cells were infected as for panel A. 10 h post infection cells
were lysed with Triton X-100 and NS1-interacting cellular and viral factors were purified and analysed by western blotting (WB), SDS-PAGE (Comassee) and agarose gel electrophoreses
(AGE). C. Quantitativemass-spectrometry analysis of cellular proteins inNS1-enriched fractions. Cellswere infected andNS1-enriched fractionswere purified as for panel (B). The proteins
were identified and quantified using iTRAQ labelling combined with LC–MS/MS. The heatmap with fold change in concentrations of selected cellular proteins in infected versus non-in-
fected cells are shown. Each cell is coloured according to the average of the log2-transformed and quantile-normalized expression values of the triplicate samples with the average of
mock controls subtracted. D. NS1 co-precipitation with the promoter and exon regions of cellular IFNB1 gene. RPE cells were mock-, WSNWT-, or WSNRK/AA- infected. Cells were collected
at 8 h post infection, and chromatin was prepared for immuno-precipitation. ChIP was performedwith anti-NS1 and anti-pol II antibodies. qPCRs were performedwith primers targeting
promotor and exon regions of IFNB1. The percentage of input DNA associated with NS1 or with pol II was quantified. The data points are mean values, and error bars represent the SD.
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3.3. Purified recombinant NS1 through R38 and K41 binds synthetic dsDNA
and inhibits Pol II transcription in vitro

To further analyse the mechanisms of NS1 binding to DNA, we
performed EMSA experiment with purified NS1WT and NS1RK/AA

proteins (Fig. 5A). For this experiment, we produced linear synthet-
ic dsDNA (DNA-SELEX), which contained central random 16 N base
pair (bp) region flanked by defined 30 bp sequences. 16 N bp region
was chosen because NS1 RBD dimer was shown to occupy 16 bp of
A-form dsRNA [46]. EMSA showed that NS1WT but not NS1RK/AA re-
tarded the migration of dsDNA in EMSA analysis (Fig. 5B). We
analysed the possible sequence-specificity of NS1 interaction with
its target DNA using Sanger sequencing, i.e. we sequenced NS1-
interacting DNA. We found that NS1 bind DNA independently of



Fig. 5. Purified recombinant NS1 binds synthetic dsDNA in a sequence no-specific manner and inhibits pre-initiation complex formation and pol II loading on DNA in vitro. A. Sodium
dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of purified recombinant NS1WT and NS1RK/AA proteins. Pick fractions from size-exclusion chromatography (Superdex-
200) of purified NS1 proteins were resolved on SDS-PAGE. The gels were stained using Coomassie blue. B. Electrophoretic mobility shift assay (EMSA) monitoring binding of
recombinant purified NS1WT and NS1KK/AA proteins to synthetic dsDNA fragment DNA-SELEX. C. The sequence of DNA-SELEX probe (top) and DNA fraction retarded by NS1WT in
EMSA. D. EMSA monitoring binding of recombinant purified NS1 (NS1WT) and its R38A/K41A mutant (NS1KK/AA) to synthetic dsDNA fragment DNA-199. Two-fold dilutions of NS1WT

and NS1RK/AA were pre-incubated with dsDNA for 15 min at room temperature prior to analysis on agarose gel. E. Microscale thermophoresis assay monitoring thermophoretic
mobility of dsDNA upon its binding to NS1WT or NS1RK/AA mutant. Normalized fluorescence of Cy5-labeled synthetic dsDNA after its incubation with indicated concentrations of NS1WT

or NS1RK/AA is shown. An increase in normalized fluorescence is observed upon dsDNA interaction with NS1. The data points are mean values and error bars represent the SD from
three independent experiments. F. Purified recombinant NS1WT or NS1KK/AA were tested in a transcription assay. Increasing amounts of the proteins were incubated with transcription
factors (TFx), pol II, nucleotides (NTPs), 32P-labeled ATP and DNA for 45 min. Reactions were stopped and synthesized 32P-labeled RNAs were resolved on denaturing PAGE. RA –
radio-autograph. G. NS1WT or NS1RK/AA was pre-incubated with DNA, or TFx and pol II. The remaining components of the transcription reaction were added and transcription reaction
was initiated by addition of NTPs. Reactions were stopped at the indicated times and the products were analysed as in panel F. Schematic representations of the experiments and the
autoradiographs (RA) are shown.
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sequence of central region, suggesting that the interaction was not
sequence-specific (Fig. 5C).

We then determined the dissociation constant (Kd) of NS1WT and
dsDNA fragment (DNA-199). EMSA showed that NS1WT retarded the
migration of DNA-199 probe in a concentration-dependent manner
with micromolar Kd (Fig. 5D). Microscale thermophoresis assay
revealed that the Kd for NS1WT was 11.1 ± 0.7 μM, whereas the Kd

for NS1RK/AA was N100 μM (Fig. 5E). Interestingly, the Kd for NS1WT-
dsDNA complex was comparable to that of NS1WT-dsRNA complex re-
ported previously [39,46–48]. These results suggested that in vitro NS1
binds dsDNA non-specifically with micromolar affinity, and that the
residues R38 and K41 of NS1 are essential for the binding.

To address whether NS1 through R38 and K41 can inhibit transcrip-
tion in vitro, we purified recombinant NS1WT or NS1RK/AA proteins
(Fig. 4A) and added them to in vitro run-off transcription assays contain-
ing naked AdMLPDNA template.We found that NS1WT but not NS1RK/AA
inhibited the in vitro synthesis of RNA in a concentration-dependent
manner (Fig. 4F). To further understand how NS1 was able to block
transcription, we set up two different experimental conditions. We
first pre-incubated NS1 with dsDNA, and then added pre-initiation
complex (PIC) and Pol II before the reaction started (Fig. 4G, incubation
1). Alternatively, we pre-incubated NS1 with PIC and Pol II, and then
added dsDNA (Fig. 4G, incubation 2). In both experimental settings,
NS1WT but not NS1RK/AA inhibited the in vitro RNA synthesis. We
concluded that NS1 inhibits in vitro transcription by binding to DNA,
which prevents the loading of PIC and Pol II.

4. Discussion

Influenza NS1 protein is an important virulence factor and
deciphering the mechanism by which NS1 antagonizes antiviral re-
sponses is critical for understanding of disease progression. Here we
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demonstrated that influenza NS1 binds synthetic dsDNA in a sequence
non-specific manner. Furthermore, we showed that this interaction
inhibited the loading of transcriptional machinery on the synthetic
DNA and thereby prevented the transcription reaction in vitro. In
infected cells, NS1 inhibited Pol II recruitment to the exon and promoter
regions of IFNB1. This observation could be potentially expanded to
other IFN genes and ISGs whose transcription was up-regulated in re-
sponse to WSNRK/AA in comparison to WSNWT and mock infections. In
addition, our results indicate that IAV infection promoted chromatin
remodelling, which could be associated with inhibition of general tran-
scription and activation of expression of certain IFNs and ISGs. Influenza
NS1 protein could, therefore, bind DNA of transcriptionally active genes
and attenuate their expression. This may potentially lead to reduced
expression of IFNs and ISGs, leading to compromised antiviral responses
of infected cells.

Importantly, R38 and K41 residues of NS1 mediate an interaction of
IAV NS1 with non-specific dsDNA and dsRNA, and the dissociation con-
stants of these interactions are very similar [39,46–48]. This suggests
that NS1 can bind both dsDNA/RNA via the phosphate backbone. Bind-
ing of NS1 to dsDNA/RNA can hinder them from loading of cellular tran-
scription machinery and recognition by cellular PRRs, respectively.

Interestingly, our attempt to purify NS1 from infected cells revealed
that the majority of NS1 was in insoluble fraction together with his-
tones, transcription machinery and DNA. High salt and RNAse treat-
ments of these fraction, as well as R38A and K41A mutations in NS1,
did not increase NS1 solubility. This indicates that additional transcrip-
tional regulation mechanisms involving NS1 interactions with cellular
factors may take place, which is in agreement with previous findings
showing that NS1 non-conserved residues outside dsDNA/RNA binding
site may interact with chromatin-associated factors [49,50].

The RNA/DNA-binding residues R38 and K41 of NS1 protein are evo-
lutionary conserved among IAVs.Moreover, the corresponding NS1 res-
idues are also conserved in influenza B viruses [51–53]. Thus, our
findings point to a general strategy, by which influenza viruses can an-
tagonize antiviral responses in infected cells to secure its replications.
Other RNA viruses are also able to inhibit cellular transcription to secure
their replication. For example, bunyamwera virus NS-S protein inhibits
the phosphorylation of Pol II C-terminal domain, while Rift Valley Fever
Virus NSs protein targets TFIIH to inhibit the transcription of cellular
genes including those of antiviral genes [54,55]. However, to our knowl-
edge, there are no data available except this study, that negative- or
positive-sense RNA viruses can inhibit cellular transcription by direct
binding of viral proteins to cellular DNA. Thus, our work provides a
first example of such a mechanism that could be potentially exploited
by other RNA virus families.

Finally, the influenza NS1-dsDNA interaction can be potentially
exploited for treatment of IAV infection. In particular, small-molecular
inhibitors of this interaction can potentially restore innate immune re-
sponses and inhibit virus replication. In addition, viruses expressing
dsDNA binding deficient NS1 may display characteristics desirable for
potential live-attenuated viral vaccines.

5. Conclusions

Host cell activates transcription of a set of antiviral genes in response
to IAV infection. Our results suggest that the viral NS1 protein can inhib-
it transcription of some of these genes by binding to dsDNA and
preventing the loading of cellular transcription machinery. Thus, IAV
can exploit its NS1 protein to attenuate antiviral responses at transcrip-
tional level to secure its replication.
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