17 research outputs found

    Régulation de la métalloprotéase ADAM10 par les tétraspanines

    Get PDF
    Les ADAMs forment une sous-famille d enzymes appelĂ©es mĂ©talloprotĂ©ases . Elles sont impliquĂ©es dans de nombreux processus aussi bien physiologiques que pathologiques de par leur capacitĂ© Ă  cliver un certain nombre de substrats tels que des facteurs de croissance, des cytokines ou des protĂ©ines d adhĂ©rence. MalgrĂ© de nombreuses Ă©tudes sur l activitĂ© des ADAMs, on ne connaĂźt que trĂšs peu d Ă©lĂ©ments de leur rĂ©gulation.Les tĂ©traspanines constituent une super-famille de protĂ©ines membranaires ayant en commun une structure particuliĂšre. Elles sont impliquĂ©es dans un grand nombre de processus biologiques fondamentaux tels que la migration, les interactions intercellulaires, la rĂ©ponse immunitaire, la fusion des gamĂštes Les tĂ©traspanines interagissent non seulement entre elles mais aussi avec un certain nombre de partenaires protĂ©iques Ă  la membrane plasmique, formant ainsi un rĂ©seau multi-molĂ©culaire appelĂ© rĂ©seau de tĂ©traspanines ou tetraspanin web . Les travaux prĂ©cĂ©dents de notre laboratoire ont montrĂ© que la mĂ©talloprotĂ©ase ADAM10 est associĂ©e au rĂ©seau de tĂ©traspanines. Cependant, la tĂ©traspanine en association directe avec ADAM10 permettant Ă  cette derniĂšre d ĂȘtre incluse dans le rĂ©seau n avait jusqu ici pas Ă©tĂ© identifiĂ©e.Tout d abord, afin d Ă©tablir un modĂšle permettant une mesure de la modulation de l activitĂ© d ADAM10 par les tĂ©traspanines, nous avons dĂ©montrĂ© que l engagement des tĂ©traspanines par des anticorps monoclonaux augmente le clivage d E-cadhĂ©rine par ADAM10. De plus, l activation d un rĂ©cepteur muscarinique Ă  l acĂ©tylcholine permet aussi une augmentation du clivage d E-cadhĂ©rine mais de maniĂšre ADAM17-dĂ©pendante cette fois. La transactivation de l EGFR n est pas impliquĂ©e dans la rĂ©gulation muscarinique du clivage de l E-cadhĂ©rine alors que l activation directe de l EGFR par un de ses ligands conduit, elle, Ă  une stimulation de ce clivage.Revenant Ă  notre quĂȘte initiale des consĂ©quences de l interaction entre ADAM10 et les tĂ©traspanines, nous avons dĂ©montrĂ© que la mĂ©talloprotĂ©ase ADAM10 interagit avec l ensemble des membres de la sous-famille de tĂ©traspanines Ă  8 cystĂ©ines TspanC8 regroupant Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 et Tspan33. Ces interactions ainsi que l expression relative de chacun des membres des TspanC8s influent sur la sortie d ADAM10 du rĂ©ticulum endoplasmique. ADAM10 et son interaction avec les TspanC8s sont conservĂ©es dans l Evolution et jouent un rĂŽle dans la rĂ©gulation de la voie de signalisation Notch. Lorsque nous avons examinĂ© plus en dĂ©tail l interaction entre la tĂ©traspanine Tspan5 et ADAM10, nous avons dĂ©couvert qu elle avait un effet nĂ©gatif sur les expressions membranaires et totales d ADAM10. De plus, cette interaction semble impliquĂ©e dans la prolifĂ©ration de la lignĂ©e cellulaire PC3 dĂ©rivĂ©e de cancer de la prostate. En effet, la surexpression de Tspan5 cause une croissance diminuĂ©e de cette lignĂ©e. Cette inhibition semble due Ă  un ou plusieurs facteurs solubles qui pourraient ĂȘtre sĂ©crĂ©tĂ©s moins efficacement par les cellules surexprimant Tspan5 que par leurs homologues sauvages. Egalement, de maniĂšre inattendue, les cellules PC3 surexprimant Tspan5 sont totalement insensibles aux drogues ciblant le rĂ©cepteur Ă  tyrosine-kinase EGFR alors que la croissance des PC3 sauvages est trĂšs rĂ©duite aprĂšs de tels traitements. Ceci impliquant donc que la croissance de ces derniĂšres est au moins partiellement dĂ©pendante de la signalisation EGFR. Enfin, nous montrons qu un autre rĂ©cepteur Ă  tyrosine-kinase appelĂ© EphA2 pourrait avoir un rĂŽle important dans la rĂ©gulation de la dĂ©pendance Ă  la signalisation EGFR des cellules PC3.ADAMs are a sub-family of enzymes called metalloproteases which are implicated in a variety of physiological as well as pathological processes through their ability to cleave a number of substrates including growth factors, cytokines or adhesion proteins. Despite numerous studies on ADAM activity, very little is known about their regulation.Tetraspanins form a super-family of membrane proteins with a common conserved structure. They are implicated in numerous biological processes including migration, intercellular interactions, immune response, gamete fusion Tetraspanins are known to interact with one another and with a restricted number of protein partners at the cell surface, thus forming a multi-molecular network referred to as the tetraspanin web . Previous studies in our laboratory have shown that the metalloprotease ADAM10 is associated to the tetraspanin web. Nevertheless, the tetraspanin in direct interaction with ADAM10 enabling it to be part of the web was not identified at the time. To begin with, in order to establish a model providing a read-out for a modulation of ADAM10 activity by tetraspanins, we demonstrate that tetraspanin engagement by monoclonal antibodies enhances E-cadherin shedding by ADAM10. Furthermore, muscarinic receptor activation also augments E-cadherin shedding but this time in an ADAM17-dependent manner. This occurs without the intervention of EGFR transactivation whereas a direct EGFR activation is able to stimulate E-cadherin shedding. Refocusing on the initial subject of the consequences of an interaction between ADAM10 and the tetraspanins, we conclusively show that the metalloprotease ADAM10 interacts with members of the conserved TspanC8 subfamily consisting of tetraspanins Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 and Tspan33. These interactions and the relative expression of each of the TspanC8 members play a role in ADAM10 trafficking. ADAM10 and TspanC8 interactions are conserved throughout the Evolution and play a role in Notch signaling pathway regulation. When we examined in more details the particular interaction between the tetraspanin Tspan5 and ADAM10, we discovered that it had a negative effect on ADAM10 membrane as well as total expression. Moreover, this interaction seems to have implications on prostate cancer PC3 cell proliferation as Tspan5 overexpression causes a diminished growth rate. This inhibition could be caused by one or more soluble factors which could be less secreted by cells overexpressing Tspan5 than wild-type counterparts. Furthermore, oddly enough, PC3 cells overexpressing Tspan5 were completely unaffected by drugs targeted against the tyrosine-kinase receptor EGFR whereas this type of treatment impaired PC3 WT cell growth which therefore seems at least partly dependent on EGFR signalling. Finally, we reveal that another tyrosine-kinase receptor called EphA2 could play the proeminent role of regulating EGFR signalling-dependence in PC3 cells.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Régulation de la métalloprotéase ADAM10 par les tétraspanines

    No full text
    ADAMs are a sub-family of enzymes called “metalloproteases” which are implicated in a variety of physiological as well as pathological processes through their ability to cleave a number of substrates including growth factors, cytokines or adhesion proteins. Despite numerous studies on ADAM activity, very little is known about their regulation.Tetraspanins form a super-family of membrane proteins with a common conserved structure. They are implicated in numerous biological processes including migration, intercellular interactions, immune response, gamete fusion
 Tetraspanins are known to interact with one another and with a restricted number of protein partners at the cell surface, thus forming a multi-molecular network referred to as « the tetraspanin web ». Previous studies in our laboratory have shown that the metalloprotease ADAM10 is associated to the tetraspanin web. Nevertheless, the tetraspanin in direct interaction with ADAM10 enabling it to be part of the web was not identified at the time. To begin with, in order to establish a model providing a read-out for a modulation of ADAM10 activity by tetraspanins, we demonstrate that tetraspanin engagement by monoclonal antibodies enhances E-cadherin shedding by ADAM10. Furthermore, muscarinic receptor activation also augments E-cadherin shedding but this time in an ADAM17-dependent manner. This occurs without the intervention of EGFR transactivation whereas a direct EGFR activation is able to stimulate E-cadherin shedding. Refocusing on the initial subject of the consequences of an interaction between ADAM10 and the tetraspanins, we conclusively show that the metalloprotease ADAM10 interacts with members of the conserved TspanC8 subfamily consisting of tetraspanins Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 and Tspan33. These interactions and the relative expression of each of the TspanC8 members play a role in ADAM10 trafficking. ADAM10 and TspanC8 interactions are conserved throughout the Evolution and play a role in Notch signaling pathway regulation. When we examined in more details the particular interaction between the tetraspanin Tspan5 and ADAM10, we discovered that it had a negative effect on ADAM10 membrane as well as total expression. Moreover, this interaction seems to have implications on prostate cancer PC3 cell proliferation as Tspan5 overexpression causes a diminished growth rate. This inhibition could be caused by one or more soluble factors which could be less secreted by cells overexpressing Tspan5 than wild-type counterparts. Furthermore, oddly enough, PC3 cells overexpressing Tspan5 were completely unaffected by drugs targeted against the tyrosine-kinase receptor EGFR whereas this type of treatment impaired PC3 WT cell growth which therefore seems at least partly dependent on EGFR signalling. Finally, we reveal that another tyrosine-kinase receptor called EphA2 could play the proeminent role of regulating EGFR signalling-dependence in PC3 cells.Les ADAMs forment une sous-famille d’enzymes appelĂ©es “mĂ©talloprotĂ©ases”. Elles sont impliquĂ©es dans de nombreux processus aussi bien physiologiques que pathologiques de par leur capacitĂ© Ă  cliver un certain nombre de substrats tels que des facteurs de croissance, des cytokines ou des protĂ©ines d’adhĂ©rence. MalgrĂ© de nombreuses Ă©tudes sur l’activitĂ© des ADAMs, on ne connaĂźt que trĂšs peu d’élĂ©ments de leur rĂ©gulation.Les tĂ©traspanines constituent une super-famille de protĂ©ines membranaires ayant en commun une structure particuliĂšre. Elles sont impliquĂ©es dans un grand nombre de processus biologiques fondamentaux tels que la migration, les interactions intercellulaires, la rĂ©ponse immunitaire, la fusion des gamĂštes
 Les tĂ©traspanines interagissent non seulement entre elles mais aussi avec un certain nombre de partenaires protĂ©iques Ă  la membrane plasmique, formant ainsi un rĂ©seau multi-molĂ©culaire appelĂ© « rĂ©seau de tĂ©traspanines » ou « tetraspanin web ». Les travaux prĂ©cĂ©dents de notre laboratoire ont montrĂ© que la mĂ©talloprotĂ©ase ADAM10 est associĂ©e au rĂ©seau de tĂ©traspanines. Cependant, la tĂ©traspanine en association directe avec ADAM10 permettant Ă  cette derniĂšre d’ĂȘtre incluse dans le rĂ©seau n’avait jusqu’ici pas Ă©tĂ© identifiĂ©e.Tout d’abord, afin d’établir un modĂšle permettant une mesure de la modulation de l’activitĂ© d’ADAM10 par les tĂ©traspanines, nous avons dĂ©montrĂ© que l’engagement des tĂ©traspanines par des anticorps monoclonaux augmente le clivage d’E-cadhĂ©rine par ADAM10. De plus, l’activation d’un rĂ©cepteur muscarinique Ă  l’acĂ©tylcholine permet aussi une augmentation du clivage d’E-cadhĂ©rine mais de maniĂšre ADAM17-dĂ©pendante cette fois. La transactivation de l’EGFR n’est pas impliquĂ©e dans la rĂ©gulation muscarinique du clivage de l’E-cadhĂ©rine alors que l’activation directe de l’EGFR par un de ses ligands conduit, elle, Ă  une stimulation de ce clivage.Revenant Ă  notre quĂȘte initiale des consĂ©quences de l’interaction entre ADAM10 et les tĂ©traspanines, nous avons dĂ©montrĂ© que la mĂ©talloprotĂ©ase ADAM10 interagit avec l’ensemble des membres de la sous-famille de tĂ©traspanines Ă  8 cystĂ©ines « TspanC8 » regroupant Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 et Tspan33. Ces interactions ainsi que l’expression relative de chacun des membres des TspanC8s influent sur la sortie d’ADAM10 du rĂ©ticulum endoplasmique. ADAM10 et son interaction avec les TspanC8s sont conservĂ©es dans l’Evolution et jouent un rĂŽle dans la rĂ©gulation de la voie de signalisation Notch. Lorsque nous avons examinĂ© plus en dĂ©tail l’interaction entre la tĂ©traspanine Tspan5 et ADAM10, nous avons dĂ©couvert qu’elle avait un effet nĂ©gatif sur les expressions membranaires et totales d’ADAM10. De plus, cette interaction semble impliquĂ©e dans la prolifĂ©ration de la lignĂ©e cellulaire PC3 dĂ©rivĂ©e de cancer de la prostate. En effet, la surexpression de Tspan5 cause une croissance diminuĂ©e de cette lignĂ©e. Cette inhibition semble due Ă  un ou plusieurs facteurs solubles qui pourraient ĂȘtre sĂ©crĂ©tĂ©s moins efficacement par les cellules surexprimant Tspan5 que par leurs homologues sauvages. Egalement, de maniĂšre inattendue, les cellules PC3 surexprimant Tspan5 sont totalement insensibles aux drogues ciblant le rĂ©cepteur Ă  tyrosine-kinase EGFR alors que la croissance des PC3 sauvages est trĂšs rĂ©duite aprĂšs de tels traitements. Ceci impliquant donc que la croissance de ces derniĂšres est au moins partiellement dĂ©pendante de la signalisation EGFR. Enfin, nous montrons qu’un autre rĂ©cepteur Ă  tyrosine-kinase appelĂ© EphA2 pourrait avoir un rĂŽle important dans la rĂ©gulation de la dĂ©pendance Ă  la signalisation EGFR des cellules PC3

    ADAM10 metalloprotease regulation by tetraspanins

    No full text
    Les ADAMs forment une sous-famille d’enzymes appelĂ©es “mĂ©talloprotĂ©ases”. Elles sont impliquĂ©es dans de nombreux processus aussi bien physiologiques que pathologiques de par leur capacitĂ© Ă  cliver un certain nombre de substrats tels que des facteurs de croissance, des cytokines ou des protĂ©ines d’adhĂ©rence. MalgrĂ© de nombreuses Ă©tudes sur l’activitĂ© des ADAMs, on ne connaĂźt que trĂšs peu d’élĂ©ments de leur rĂ©gulation.Les tĂ©traspanines constituent une super-famille de protĂ©ines membranaires ayant en commun une structure particuliĂšre. Elles sont impliquĂ©es dans un grand nombre de processus biologiques fondamentaux tels que la migration, les interactions intercellulaires, la rĂ©ponse immunitaire, la fusion des gamĂštes
 Les tĂ©traspanines interagissent non seulement entre elles mais aussi avec un certain nombre de partenaires protĂ©iques Ă  la membrane plasmique, formant ainsi un rĂ©seau multi-molĂ©culaire appelĂ© « rĂ©seau de tĂ©traspanines » ou « tetraspanin web ». Les travaux prĂ©cĂ©dents de notre laboratoire ont montrĂ© que la mĂ©talloprotĂ©ase ADAM10 est associĂ©e au rĂ©seau de tĂ©traspanines. Cependant, la tĂ©traspanine en association directe avec ADAM10 permettant Ă  cette derniĂšre d’ĂȘtre incluse dans le rĂ©seau n’avait jusqu’ici pas Ă©tĂ© identifiĂ©e.Tout d’abord, afin d’établir un modĂšle permettant une mesure de la modulation de l’activitĂ© d’ADAM10 par les tĂ©traspanines, nous avons dĂ©montrĂ© que l’engagement des tĂ©traspanines par des anticorps monoclonaux augmente le clivage d’E-cadhĂ©rine par ADAM10. De plus, l’activation d’un rĂ©cepteur muscarinique Ă  l’acĂ©tylcholine permet aussi une augmentation du clivage d’E-cadhĂ©rine mais de maniĂšre ADAM17-dĂ©pendante cette fois. La transactivation de l’EGFR n’est pas impliquĂ©e dans la rĂ©gulation muscarinique du clivage de l’E-cadhĂ©rine alors que l’activation directe de l’EGFR par un de ses ligands conduit, elle, Ă  une stimulation de ce clivage.Revenant Ă  notre quĂȘte initiale des consĂ©quences de l’interaction entre ADAM10 et les tĂ©traspanines, nous avons dĂ©montrĂ© que la mĂ©talloprotĂ©ase ADAM10 interagit avec l’ensemble des membres de la sous-famille de tĂ©traspanines Ă  8 cystĂ©ines « TspanC8 » regroupant Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 et Tspan33. Ces interactions ainsi que l’expression relative de chacun des membres des TspanC8s influent sur la sortie d’ADAM10 du rĂ©ticulum endoplasmique. ADAM10 et son interaction avec les TspanC8s sont conservĂ©es dans l’Evolution et jouent un rĂŽle dans la rĂ©gulation de la voie de signalisation Notch. Lorsque nous avons examinĂ© plus en dĂ©tail l’interaction entre la tĂ©traspanine Tspan5 et ADAM10, nous avons dĂ©couvert qu’elle avait un effet nĂ©gatif sur les expressions membranaires et totales d’ADAM10. De plus, cette interaction semble impliquĂ©e dans la prolifĂ©ration de la lignĂ©e cellulaire PC3 dĂ©rivĂ©e de cancer de la prostate. En effet, la surexpression de Tspan5 cause une croissance diminuĂ©e de cette lignĂ©e. Cette inhibition semble due Ă  un ou plusieurs facteurs solubles qui pourraient ĂȘtre sĂ©crĂ©tĂ©s moins efficacement par les cellules surexprimant Tspan5 que par leurs homologues sauvages. Egalement, de maniĂšre inattendue, les cellules PC3 surexprimant Tspan5 sont totalement insensibles aux drogues ciblant le rĂ©cepteur Ă  tyrosine-kinase EGFR alors que la croissance des PC3 sauvages est trĂšs rĂ©duite aprĂšs de tels traitements. Ceci impliquant donc que la croissance de ces derniĂšres est au moins partiellement dĂ©pendante de la signalisation EGFR. Enfin, nous montrons qu’un autre rĂ©cepteur Ă  tyrosine-kinase appelĂ© EphA2 pourrait avoir un rĂŽle important dans la rĂ©gulation de la dĂ©pendance Ă  la signalisation EGFR des cellules PC3.ADAMs are a sub-family of enzymes called “metalloproteases” which are implicated in a variety of physiological as well as pathological processes through their ability to cleave a number of substrates including growth factors, cytokines or adhesion proteins. Despite numerous studies on ADAM activity, very little is known about their regulation.Tetraspanins form a super-family of membrane proteins with a common conserved structure. They are implicated in numerous biological processes including migration, intercellular interactions, immune response, gamete fusion
 Tetraspanins are known to interact with one another and with a restricted number of protein partners at the cell surface, thus forming a multi-molecular network referred to as « the tetraspanin web ». Previous studies in our laboratory have shown that the metalloprotease ADAM10 is associated to the tetraspanin web. Nevertheless, the tetraspanin in direct interaction with ADAM10 enabling it to be part of the web was not identified at the time. To begin with, in order to establish a model providing a read-out for a modulation of ADAM10 activity by tetraspanins, we demonstrate that tetraspanin engagement by monoclonal antibodies enhances E-cadherin shedding by ADAM10. Furthermore, muscarinic receptor activation also augments E-cadherin shedding but this time in an ADAM17-dependent manner. This occurs without the intervention of EGFR transactivation whereas a direct EGFR activation is able to stimulate E-cadherin shedding. Refocusing on the initial subject of the consequences of an interaction between ADAM10 and the tetraspanins, we conclusively show that the metalloprotease ADAM10 interacts with members of the conserved TspanC8 subfamily consisting of tetraspanins Tspan5, Tspan17, Tspan14, Tspan15, Tspan10 and Tspan33. These interactions and the relative expression of each of the TspanC8 members play a role in ADAM10 trafficking. ADAM10 and TspanC8 interactions are conserved throughout the Evolution and play a role in Notch signaling pathway regulation. When we examined in more details the particular interaction between the tetraspanin Tspan5 and ADAM10, we discovered that it had a negative effect on ADAM10 membrane as well as total expression. Moreover, this interaction seems to have implications on prostate cancer PC3 cell proliferation as Tspan5 overexpression causes a diminished growth rate. This inhibition could be caused by one or more soluble factors which could be less secreted by cells overexpressing Tspan5 than wild-type counterparts. Furthermore, oddly enough, PC3 cells overexpressing Tspan5 were completely unaffected by drugs targeted against the tyrosine-kinase receptor EGFR whereas this type of treatment impaired PC3 WT cell growth which therefore seems at least partly dependent on EGFR signalling. Finally, we reveal that another tyrosine-kinase receptor called EphA2 could play the proeminent role of regulating EGFR signalling-dependence in PC3 cells

    ASTRONOMICAL ORIENTATIONS OF NEOLITHIC TOMBS IN MONTE REVINCU

    No full text
    ISBN 2-911285-28-XThis paper presents a study performed in the framework of an interdisciplinary project developed at the University of Corsica involving information technology researchers, anthropologists and people from the field of astronomy. In the first steps of the work which has to be done we have studied the link between megaliths and astronomy. In order to study the links between oral culture, megaliths and astronomy, we integrate modern information technology like GIS, database, GPS surveying, 3D mapping, statistical components and archeaoastronomy field survey. The paper is organized as follows : after a summary of a legend from the north Corsica oral culture, we describe the megaliths involved in the legend ; in a following part of the paper we present the orientations of the different surveyed structures. The fourth part deals with the astronomical analysis of the different sites of the legend. Finally the last part deals with the perspectives and draws some conclusion

    Legends, Megaliths And Astronomy In Corsica Island

    No full text
    actes sur cd-rom ; Karibu edition ; DLF-20050329-920This paper presents a study performed in the framework of an interdisciplinary project developed at the University of Corsica involving information technology researchers and engineers, anthropologists and people from the field of astronomy. The goal of the project is to reveal the Mythology of the Corsica Island, which has been buried under thousand years of invasions. More than 6000 years ago, Corsica, an island of the west Mediterranean basin saw the emergence of megaliths all over the island territory. These megaliths are signs that define a sacred space linked with a very old mythology. This forgotten mythology is also highlighted through toponyms, beliefs and legends. The combination of oral culture, insularity and megaliths defines an underground sacred geography all over the territory. In the first steps of the work which has to be done we have studied the link between megaliths and astronomy. In order to achieve this goal, we integrate modern information technology like GIS, database, GPS surveying, 3D mapping, and statistical components and archeaoastronomy field survey. An example of application is presented in detail. This example has an anthropological part with the study of a legend of the Corsican oral culture: “A fola di u Lurcu” linked with megaliths. We will present in detail how we use archeaoastronomy technologies in the framework of the study of megaliths linked with the legend of north Corsica : a fola di u Lurcu (the story of the giant) The presentation is organized as follows. After a summary of the previously introduced legend, we first present the megaliths involved in the legend ; in a following part of the presentation we present the orientations of the different surveyed structures. The fourth part deals with the astronomical analysis of the different sites of the legend. Finally the last part deals with the perspectives and draws some conclusions

    Orientations of Corsican Neolithic Tombs

    No full text
    ISBN : 978-88-901078-2-5International audienceThe megalithic Corsican civilization flourished in the first half of the fourth millennium B.C. This early phase has left numerous traces in Corsica that are to be found everywhere in the southern half of the island and in some very few parts in the northern part. As regards burials, there seems in megalithic times to have been the same orientation custom all over the island. The orientation customs observed by builders of communal tombs in Corsica are presented in detail in the book : “Tombs and temples and their orientations : a new perspective on Mediterranean prehistory” written by Michael Hoskin (Hoskin 2001). The orientations of eight dolmens of southern Corsica which have been measured by Michael Hoskin are presented in the book Michael Hoskin showed that these dolmens faced easterly or southerly except one facing west. Furthermore he pointed out in the Chapter 12 of his book how the eight Corsican dolmens and those from northern Sardinia were oriented within the SR/SC range (from 60° to 190°). In this article we are dealing with the measurements of 31 Corsican megalithic dolmens including the previous eight already measured by Michael Hoskin. In the course of our fieldwork we also measured a number of additional non-dolmenic early tombs and the relevant data are also presented. We will point out that the conclusions presented by Michael Hoskin are confirmed through this new campaign of measurements
    corecore