207 research outputs found

    Magneto-Elastic Resonance: Principles, Modeling and Applications

    Get PDF
    The magnetostriction effects are first discussed in the frame of the magneto-elastic resonance to define important values mainly the magneto-elastic coupling factor, k33. We review the different magnetostrictive materials according to their developments, with a special attention to amorphous ribbons to design magnetostrictive resonators. Furthermore, we focus on the current instrumental setups including their limitations, and then on the usual measurement procedures of the resonators, particularly the frequency domain measurement. In addition, an innovative approach based on the magneto-elastic impedance is reported, together with an analytical model which establishes the complete transfer function between the input and output voltages. This model is applied to ribbon-shaped materials, particularly to determine the magneto-elastic coupling factor. These resonators are suitable to sensing applications, i.e., to estimate the influential quantities such as the temperature, magnetic fields and mass stuck on the resonating surface

    Magnetic properties and critical behavior of random alfa-FeMnAl alloys: An Ising Monte Carlo study

    Get PDF
    ABSTRACT: The effect of atomic disorder, dilution, and competing interactions upon the magnetic properties of alfa-FeMnAl alloys with different stoichiometries is addressed by means of the Monte Carlo method. Magnetization per site, specific heat, and magnetic susceptibility were computed as a function of temperature on the basis of a Metropolis dynamics, from which critical exponents were estimated. Simulation was carried out in the frame of a random site-diluted three-dimensional Ising model with nearest-neighbor interactions, where Fe-Fe ferromagnetic and Fe-Mn, Mn-Mn antiferromagnetic interactions, as well as the Al dilutor effect, were taken into account. Results, which are summarized in a magnetic phase diagram, reveal the occurrence of several phases including reentrant and pure spin-glass behaviors below around 11 K, and a ferromagnetic to paramagnetic phase transition at temperatures between 100 K and 400 K. Finally, critical exponents, which are consistent with Harris criterion, are also compared to those obtained in other 3D random Ising models

    Estructura magnética de la akaganeita sintética: Revisión de resultados Mössbauer

    Get PDF
    RESUMEN: El refinamiento del espectro Mössbauer, i.e. la asignaciĂłn del nĂșmero correcto de componentes espectrales y su origen fĂ­sico, ha sido por mucho tiempo un tema controversial en el caso de la akaganeita. La mayorĂ­a de las interpretaciones estĂĄn basadas en la estructura tetragonal reportada anteriormente, y muy pocas en la recientemente reportada estructura monoclĂ­nica. Por otro lado, la estructura magnĂ©tica se ha propuesto como colineal antiferromagnĂ©tica, esperomĂĄgnetica Ăł asperomĂĄgnetica. En esta reseña revisamos crĂ­ticamente algunos de los trabajos que se han hecho hasta la fecha y se esbozan futuros estudios experimentales y teĂłricos necesarios para conocer mejor la estructura magnĂ©tica de la akaganeita.ABSTRACT: The refinement of the Mössbauer spectra, i.e. the assignation of the correct number of spectral components and their physical origin, has been a long controversy in the case of akaganeite. Most interpretations are based upon the earlier reported tetragonal structure, and very few upon the recently reported monoclinic structure. On the other hand, the magnetic structure has been proposed to be collinear antiferromagnetic, speromagnetic or asperomagnetic. In this paper we critically revise some of the works that have been done to date and outline future experimental and theoretical studies required to gain a better understanding of the magnetic structure of akaganeite

    Eighteen years of steel–bentonite interaction in the FEBEX in situ test at the Grimsel Test Site in Switzerland

    Get PDF
    Corrosion of steel canisters containing buried high-level radioactive waste is a relevant issue for the long-term integrity of repositories. The purpose of the present study was to evaluate this issue by examining two differently corroded blocks originating from a full-scale in situ test of the FEBEX bentonite site in Switzerland. The FEBEX experiment was designed initially as a feasibility test of an engineered clay barrier system and was recently dismantled after 18 years of activity. Samples were studied by ‘spatially resolved’ and ‘bulk’ experimental methods, including Scanning Electron Microscopy, Elemental Energy Dispersive Spectroscopy (SEM-EDX), ÎŒ- Raman spectroscopy, X-ray Fluorescence (XRF), X-ray Diffraction (XRD), and 57Fe Mössbauer spectrometry, with a focus on Fe-bearing phases. In one of the blocks, corrosion of the steel liner led to diffusion of Fe into the bentonite, resulting in the formation of large (width > 140 mm) red, orange, and blue colored halos. Goethite was identified as the main corrosion product in the red and orange zones while no excess Fe2+ (compared to the unaffected bentonite) was observed there. Excess Fe2+ was found to have diffused further into the clay (in the blue zones) but its speciation could not be unambiguously clarified. The results indicate the occurrence of newly formed octahedral Fe2+ either as Fe2+ sorbed on the clay or as structural Fe2+ inside the clay (following electron transfer from sorbed Fe2+). No other indications of clay transformation or newly formed clay phases were found. The overall pattern indicates that diffusion of Fe was initiated when oxidizing conditions were still prevailing inside the bentonite block, resulting in the accumulation of Fe3+ close to the interface (up to three times the original Fe content), and continued when reducing conditions were reached, allowing deeper diffusion of Fe2+ into the clay (inducing an increase of 10– 12% of the Fe content)

    Coexisting structural disorder and robust spin-polarization in half-metallic FeMnVAl

    Get PDF
    Half-metallic ferromagnets (HMF) are on one of the most promising materials in the field of spintronics due to their unique band structure consisting of one spin sub-band having metallic characteristics along with another sub-band with semiconductor-like behavior. In this work, we report the synthesis of a novel quaternary Heusler alloy FeMnVAl and have studied the structural, magnetic, transport, and electronic properties complemented with first-principles calculations. Among different possible structurally ordered arrangements, the optimal structure is identified by theoretical energy minimization. The corresponding spin-polarized band structure calculations indicates the presence of a half-metallic ferromagnetic ground state. A detailed and careful investigation of the x-ray diffraction data, M\"{o}ssbauer and nuclear magnetic resonance spectra suggest the presence of site-disorder between the Fe and Mn atoms in the stable ordered structure of the system. The magnetic susceptibility measurement clearly establishes a ferromagnetic-like transition below ∌\sim213 K. The 57{^{57}}Fe M\"{o}ssbauer spectrometry measurements suggest only the Mn-spins could be responsible for the magnetic order, which is consistent with our theoretical calculation. Surprisingly, the density-functional-theory calculations reveal that the spin-polarization value is almost immunized (92.4\% →{\rightarrow} 90.4\%) from the Mn-Fe structural disorder, even when nonmagnetic Fe and moment carrying Mn sites are entangled inseparably. Robustness of spin polarization and half metallicity in the studied FeMnVAl compound comprising structural disorder is thus quite interesting and could provide a new direction to investigate and understand the exact role of disorders on spin polarization in these class of materials, over the available knowledge.Comment: 12 page

    Magnetism in non-stoichiometric goethite of varying total water content and surface area

    Get PDF
    ABSTRACT: In this work, the magnetic properties of four non-stoichiometric goethites with varying total water content and surface area have been investigated. The samples were prepared using two different hydrothermal methods, deriving either from Fe(II) precursors or from Fe(III) precursors. The effects of both agitation during mixing solutions and drying time during synthesis upon the physical properties of the final products were also studied. The samples were characterized by XRD, TGA, BET, Fe Mšossbauer spectrometry at 300 K, 77 K and 4.2 K, ZFC and FC curves, and magnetization curves. The goethites synthesized from the Fe(II) precursors result less crystalline, contain higher water content than those prepared from the Fe(III) precursor. In addition, ferrous precursor goethites exhibit superparamagnetic relaxation effects, while the ferric precursor goethites exhibit magnetic ordering of clusters. It is found that the stirring process during synthesis can affect the total water content and the magnetic behaviour of the goethites. Our results suggest that structural water content decreases the magnetic hyperfine field at 4.2 K. The adsorbed water content also affects this parameter as suggested by in situ annealing cycles of the goethites in a Mšossbauer cryofurnace. Finally, we propose an unique 2-D phase diagram to describe all the magnetic properties of present goethites observed as a function of temperature, surface area (or particle size) and total water content

    Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay

    Get PDF
    International audienceThe mobility and availability of the toxic metalloid selenium in the environment is largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (≀ 1 month) kinetics of selenite (Se(IV)O3 -) sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (x-ray absorption near-edge spectroscopy) and EXAFS (extended x-ray absorption finestructure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈ 2 mmol kg-1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then 3 available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, the average particle size of this precipitate does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters

    Otkriće radio-valova i neki pravni aspekti radio-saobraćaja

    Get PDF
    International audienceA series of triazole fluoride weberites (M1−x2+Mx3+)M3+F5(Htaz)1−x(taz)x is obtained by hydrothermal synthesis. All phases are found to be isostructural to ZnAlF5(Htaz) by powder X-ray diffraction. Weberite structures are prone to induce the magnetic frustration of antiferromagnetic interactions originating from the cationic topology of HTB layers. The (nD) magnetic properties of (0D) Co–Ga, (1D) Zn–Fe, (3D) Fe–Ga, Mn–Fe, Co–Fe and Co–V couples are thus reported. Co2+ or Fe2+ magnetic anisotropy induces a negative magnetisation below TN and compensation temperatures for Mn–Fe and Co–Fe couples. All iron 3D magnetic phases exhibit high NĂ©el temperatures, between 81 K and 102 K, and large |ΞP/TN| ratios, signalling strong magnetic frustration. Their cation site occupancies and the deduced (de)protonation states of the amine are accurately determined by 57Fe Mössbauer spectrometry. In addition, this spectroscopy evidences a subtle effect of the atmosphere that surrounds the samples: the magnetic ordering temperatures TN decrease significantly when the samples are cooled under vacuum with respect to samples that are cooled at ambient pressure. This novel phenomenon, which is highlighted for all studied (3D) triazole iron weberites, is reversible, and thus provides promising perspectives for understanding the underlying mechanism

    Oxidation State and Structure of Fe in Nontronite: From Oxidizing to Reducing Conditions.

    Get PDF
    The redox reaction between natural Fe-containing clay minerals and its sorbates is a fundamental process controlling the cycles of many elements such as carbon, nutrients, redox-sensitive metals, and metalloids (e.g., Co, Mn, As, Se), and inorganic as well as organic pollutants in Earth's critical zone. While the structure of natural clay minerals under oxic conditions is well-known, less is known about their behavior under anoxic and reducing conditions, thereby impeding a full understanding of the mechanisms of clay-driven reduction and oxidation (redox) reactions especially under reducing conditions. Here we investigate the structure of a ferruginous natural clay smectite, nontronite, under different redox conditions, and compare several methods for the determination of iron redox states. Iron in nontronite was gradually reduced chemically with the citrate-bicarbonate-dithionite (CBD) method. 57Fe Mössbauer spectrometry, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) spectroscopy including its pre-edge, extended X-ray absorption fine structure (EXAFS) spectroscopy, and mediated electrochemical oxidation and reduction (MEO/MER) provided consistent Fe(II)/Fe(III) ratios. By combining X-ray diffraction (XRD) and transmission electron microscopy (TEM), we show that the long-range structure of nontronite at the highest obtained reduction degree of 44% Fe(II) is not different from that of fully oxidized nontronite except for a slight basal plane dissolution on the external surfaces. The short-range order probed by EXAFS spectroscopy suggests, however, an increasing structural disorder and Fe clustering with increasing reduction of structural Fe

    High spin-polarization in a disordered novel quaternary Heusler alloy FeMnVGa

    Full text link
    In this work, we report the successful synthesis of a Fe-based novel half-metallic quaternary Heusler alloy FeMnVGa and its structural, magnetic and transport properties probed through different experimental methods and theoretical technique. Density functional theory (DFT) calculations performed on different types of structure reveal that Type-2 ordered structure (space group: F-43m, Ga at 4a, V at 4b, Mn at 4c and Fe at 4d) possess minimum energy among all the ordered variants. Ab-initio simulations in Type 2 ordered structure further reveal that the compound is half-metallic ferromagnet (HMF) having a large spin-polarization (89.9 %). Neutron diffraction reveal that the compound crystalizes in disordered Type-2 structure (space group: Fm-3m) in which Ga occupy at 4a, V at 4b and Fe/Mn occupy 4c/4d sites with 50:50 proportions. The structural disorder is further confirmed by X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS),57Fe Mossbauer spectrometry results and DFT calculations. Magnetisation studies suggest that the compound orders ferromagnetically below TC ~ 293 K and the saturation magnetization follows Slater-Pauling rule. Mossbauer spectrometry, along with neutron diffraction suggest that Mn is the major contributor to the total magnetism in the compound consistent with the theoretical calculations. First principle calculations indicate that spin-polarization remain high (81.3 %) even in the presence of such large atomic disorder. The robustness of the HMF property in presence of disorder is a quite unique characteristic over other reported HMF in literature and make this compound quiet promising for spintronics applications
    • 

    corecore