140 research outputs found

    A puzzling anomaly in the 4-mer composition of the giant pandoravirus genomes reveals a stringent new evolutionary selection process

    Get PDF
    International audienceThe Pandoraviridae is a rapidly growing family of giant viruses, all of which have been isolated using laboratory strains of Acanthamoeba. The genomes of ten distinct strains have been fully characterized, reaching up to 2.5 Mb in size. These double-stranded DNA genomes encode the largest of all known viral proteomes and are propagated in oblate virions that are among the largest ever-described (1.2 μm long and 0.5 μm wide). The evolutionary origin of these atypical viruses is the object of numerous speculations. Applying the Chaos Game Representation to the pandoravirus genome sequences, we discovered that the tetranucleotide (4-mer) "AGCT" is totally absent from the genomes of 2 strains (P. dulcis and P. quercus) and strongly underrepresented in others. Given the amazingly low probability of such an observation in the corresponding randomized sequences, we investigated its biological significance through a comprehensive study of the 4-mer compositions of all viral genomes. Our results indicate that "AGCT" was specifically eliminated during the evolution of the Pandoraviridae and that none of the previously proposed host-virus antagonistic relationships could explain this phenomenon. Unlike the three other families of giant viruses (Mimiviridae, Pithoviridae, Molliviridae) infecting the same Acanthamoeba host, the pandoraviruses exhibit a puzzling genomic anomaly suggesting a highly specific DNA editing in response to a new kind of strong evolutionary pressure.IMPORTANCE The recent years have seen the discovery of several families of giant DNA viruses all infecting the ubiquitous amoebozoa of the genus Acanthamoeba. With dsDNA genomes reaching 2.5 Mb in length packaged in oblate particles the size of a bacterium, the pandoraviruses are the most complex and largest viruses known as of today. In addition to their spectacular dimensions, the pandoraviruses encode the largest proportion of proteins without homolog in other organisms which are thought to result from a de novo gene creation process. While using comparative genomics to investigate the evolutionary forces responsible for the emergence of such an unusual giant virus family, we discovered a unique bias in the tetranucleotide composition of the pandoravirus genomes that can only result from an undescribed evolutionary process not encountered in any other microorganism

    Universal pinning energy barrier for driven domain walls in thin ferromagnetic films

    Get PDF
    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.Comment: 10 pages, 3 figure

    Strain-Control of the magnetic anisotropy in (Ga,Mn)(As,P) ferromagnetic semiconductor layers

    Full text link
    A small fraction of phosphorus (up to 10 %) was incorporated in ferromagnetic (Ga,Mn)As epilayers grown on a GaAs substrate. P incorporation allows reducing the epitaxial strain or even change its sign, resulting in strong modifications of the magnetic anisotropy. In particular a reorientation of the easy axis toward the growth direction is observed for high P concentration. It offers an interesting alternative to the metamorphic approach, in particular for magnetization reversal experiments where epitaxial defects stongly affect the domain wall propagation

    Association of soluble markers of inflammation with peri-coronary artery inflammation in people with and without HIV infection and without cardiovascular disease

    Get PDF
    BACKGROUND: Inflammation is linked to elevated cardiovascular disease (CVD) risk in people with HIV (PWH) on antiretroviral therapy (ART). Fat attenuation index (FAI) is a measure of peri-coronary inflammation that independently predicts CVD risk in HIV-uninfected persons. Whether FAI is associated with soluble inflammatory markers is unknown. METHODS: Plasma levels of inflammatory markers were measured in 58 PWH and 16 controls without current symptoms or prior known CVD who underwent coronary computed tomography angiography and had FAI measurements. A cross-sectional analysis was performed, and associations of markers with FAI values of the right coronary artery (RCA) and left anterior descending artery (LAD) were assessed using multivariable regression models adjusted for the potential confounders age, sex, race, low-density lipoprotein cholesterol, body mass index, and use of lipid-lowering medication. RESULTS: Several inflammatory markers had significant associations with RCA or LAD FAI in adjusted models, including sCD14, sCD163, TNFR-I, and TNFR-II, CCL5, CX3CL1, IP-10. CONCLUSIONS: The associations between indices of systemic and peri-coronary inflammation are novel and suggest that these systemic markers and FAI together are promising noninvasive biomarkers that can be applied to assess asymptomatic CVD in people with and without HIV; they also may be useful tools to evaluate effects of anti-inflammatory interventions

    Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes

    Get PDF
    With genomes of up to 2.7 Mb propagated in μm-long oblong particles and initially predicted to encode more than 2000 proteins, members of the Pandoraviridae family display the most extreme features of the known viral world. The mere existence of such giant viruses raises fundamental questions about their origin and the processes governing their evolution. A previous analysis of six newly available isolates, independently confirmed by a study including three others, established that the Pandoraviridae pan-genome is open, meaning that each new strain exhibits protein-coding genes not previously identified in other family members. With an average increment of about 60 proteins, the gene repertoire shows no sign of reaching a limit and remains largely coding for proteins without recognizable homologs in other viruses or cells (ORFans). To explain these results, we proposed that most new protein-coding genes were created de novo, from pre-existing non-coding regions of the G+C rich pandoravirus genomes. The comparison of the gene content of a new isolate, pandoravirus celtis, closely related (96% identical genome) to the previously described p. quercus is now used to test this hypothesis by studying genomic changes in a microevolution range. Our results confirm that the differences between these two similar gene contents mostly consist of protein-coding genes without known homologs, with statistical signatures close to that of intergenic regions. These newborn proteins are under slight negative selection, perhaps to maintain stable folds and prevent protein aggregation pending the eventual emergence of fitness-increasing functions. Our study also unraveled several insertion events mediated by a transposase of the hAT family, 3 copies of which are found in p. celtis and are presumably active. Members of the Pandoraviridae are presently the first viruses known to encode this type of transposase
    corecore