2,276 research outputs found

    Acute Effects of TiO2 Nanomaterials on the Viability and Taxonomic Composition of Aquatic Bacterial Communities Assessed via High-Throughput Screening and Next Generation Sequencing

    Get PDF
    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally occurring bacterial species can be assessed simultaneously under environmentally relevant conditions

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Uniformity in the Wiener-Wintner theorem for nilsequences

    Full text link
    We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.Comment: v3: 18 p., proof that the cube construction produces compact homogeneous spaces added, measurability issues in the proof of Theorem 1.5 addressed. We thank the anonymous referees for pointing out these gaps in v

    Transition Between Ground State and Metastable States in Classical 2D Atoms

    Full text link
    Structural and static properties of a classical two-dimensional (2D) system consisting of a finite number of charged particles which are laterally confined by a parabolic potential are investigated by Monte Carlo (MC) simulations and the Newton optimization technique. This system is the classical analog of the well-known quantum dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to investigate the barriers and the transitions between the ground and all metastable states we first locate the saddle points between them, then by walking downhill from the saddle point to the different minima, we find the path in configurational space from the ground state to the metastable states, from which the geometric properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the functional form of the inter-particle interaction and on the confinement potential is also investigated

    A nonalcoholic fatty liver disease cirrhosis model in gerbil:the dynamic relationship between hepatic lipid metabolism and cirrhosis

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) usually takes decades to develop into cirrhosis, which limits the longitudinal study of NAFLD. This work aims at developing a NAFLD-caused cirrhosis model in gerbil and examining the dynamic relationship between hepatic lipid metabolism and cirrhosis. We fed gerbil a high-fat and high-cholesterol diet (HFHCD) for 24 weeks, and recorded the gerbil's phenotype at 3, 6, 9, 12, 15, 18, 21, 24 weeks. The model's pathological process, lipid metabolism, oxidative stress, liver collagen deposition and presence of relevant cytokines were tested and evaluated during the full-time frame of disease onset. The gerbil model can induce nonalcoholic steatohepatitis (NASH) within 9 weeks, and can develop cirrhosis after 21 weeks induction. The model's lipids metabolism disorder is accompanied with the liver damage development. During the NAFLD progression, triglycerides (TG) and free fatty acids (FFA) have presented distinct rise and fall tendency, and the turning points are at the fibrosis stage. Besides that, the ratios of total cholesterol (CHO) to high-density lipoprotein cholesterol (HDL-C) exhibited constant growth tendency, and have a good linear relationship with hepatic stellate cells (HSC) (R-2 = 0.802, P <0.001). The gerbil NAFLD cirrhosis model has been developed and possesses positive correlation between lipids metabolism and cirrhosis. The compelling rise and fall tendency of TG and FFA indicated that the fibrosis progression can lead to impairment in lipoprotein synthesis and engender decreased TG level. CHO/HDL-C ratios can imply the fibrosis progress and be used as a blood indicator for disease prediction and prevention

    Circular Single-Stranded Synthetic DNA Delivery Vectors for MicroRNA

    Get PDF
    Single-stranded (ss) circular oligodeoxynucleotides were previously found to undergo rolling circle transcription (RCT) by phage and bacterial RNA polymerases (RNAPs) into tandemly repetitive RNA multimers. Here, we redesign them to encode minimal primary miRNA mimics, with the long term aim of intracellular transcription followed by RNA processing and maturation via endogenous pathways. We describe an improved method for circularizing ss synthetic DNA for RCT by using a recently described thermostable RNA ligase, which does not require a splint oligonucleotide to juxtapose the ligating ends. In vitro transcription of four templates demonstrates that the secondary structure inherent in miRNA-encoding vectors does not impair their RCT by RNAPs previously shown to carry out RCT. A typical primary-miRNA rolling circle transcript was accurately processed by a human Drosha immunoprecipitate, indicating that if human RNAPs prove to be capable of RCT, the resulting transcripts should enter the endogenous miRNA processing pathway in human cells. Circular oligonucleotides are therefore candidate vectors for small RNA delivery in human cells, which express RNAPs related to those tested here
    • …
    corecore