409 research outputs found
Meromorphy and topology of localized solutions in the Thomas–MHD model
The one-dimensional MHD system first introduced by J.H. Thomas [Phys. Fluids 11, 1245 (1968)] as a model of the dynamo effect is thoroughly studied in the limit of large magnetic Prandtl number. The focus is on two types of localized solutions involving shocks (antishocks) and hollow (bump) waves. Numerical simulations suggest phenomenological rules concerning their generation, stability and basin of attraction. Their topology, amplitude and thickness are compared favourably with those of the meromorphic travelling waves, which are obtained exactly, and respectively those of asymptotic descriptions involving rational or degenerate elliptic functions. The meromorphy bars the existence of certain configurations, while others are explained by assuming imaginary residues. These explanations are tested using the numerical amplitude and phase of the Fourier transforms as probes of the analyticity properties. Theoretically, the proof of the partial integrability backs up the role ascribed to meromorphy. Practically, predictions are derived for MHD plasmas
Oldest Fossil Basidiomycete Clamp Connections
This is the publisher's version, which is being shared with permission. The original version is available from: http://dx.doi.org/10.1007/s10267-010-0065-4A rachis of the fossil filicalean fern Botryopteris antiqua containing abundant septate hyphae with
clamp connections is preserved in a late Visean (Mississippian; *330 Ma) chert from Esnost (Autun Basin) in
central France. Largely unbranched tubular hyphae pass
from cell to cell, but may sometimes produce a branch
from a clamp connection. Other clamp-bearing hyphae
occur clustered in individual cells or small groups of
adjacent host cells. These hyphae may be tubular, catenulate
with numerous hyphal swellings, or they may display a
combination of both. The Visean hyphae with clamp connections
predate Palaeancistrus martinii, the heretofore
oldest direct fossil evidence of Basidiomycota, by some 25 Ma
A Charcoalified Ovule Adapted for Wind Dispersal and Deterring Herbivory from the Late Viséan (Carboniferous) of Scotland
International audiencePremise of research : Mississippian (Lower Carboniferous) anatomically preserved ovules are pivotal to our present understanding of the Paleozoic primary seed plant radiation, but few are known from the late Viséan stratigraphic interval approximately 330 million years ago. Here, we document an exceptionally well-preserved mesoscopic charcoalified ovule from late Viséan limestones that is adapted for wind dispersal and for deterring herbivory.Methodology : We use synchrotron radiation X-ray tomographic microscopy (SRXTM) and low-vacuum scanning electron microscopy (LVSEM) to analyze histological features not identifiable through traditional methods.Pivotal results:The ovule is small, 2 mm long and 1.25 mm in maximum diameter, and has a dense covering of spirally arranged, long, slender, hollow hairs with glandular apexes and a distal papilla. The nucellus is fused to the integument up to the nucellar apex, and above this, the integument comprises eight apical lobes, each with a single vascular bundle. The nucellar apex has a domed pollen chamber and large central column characteristic of hydrasperman-type (lagenostomalean) pteridosperms, but it lacks the distal salpinx seen in most hydrasperman ovules, leaving an exposed distal opening to the pollen chamber for pollination. Differences with existing taxa lead to the erection of Hirsutisperma rothwellii gen. et sp. nov.Conclusions : The apical glands presumably functioned as granivory deterrents; coprolites (fossilized feces) from herbivorous arthropods are abundant in the fossiliferous horizon and at this stratigraphic interval. The small ovule size and its dense covering of hairs indicate Hirsutisperma was adapted for wind dispersal and was an r-selected species, producing large numbers of small offspring in unstable or changing environments. Taphonomic implications are discussed, including preservational biases for charcoalification. Hirsutisperma provides the first clear evidence for ecological niche partitioning in Mississippian hydrasperman-type ovules
Diversity of large woody lignophytes preceding the extinction of Archaeopteris: new data from the middle Tournaisian of Thuringia (Germany)
International audienceAnatomically preserved axes representing three lignophyte species occur in the middle Tournaisian deposit of Kahlleite in Thuringia. One is characterized by a small oval eustele, short uniseriate rays, and alternate distichous phyllotaxy. It is assigned to the progymnosperm genus Protopitys. The two others share a eustelic primary vascular system comprising a parenchymatous pith and numerous xylem strands in a peripheral position. The secondary xylem comprises rays that are mostly uniseriate and rarely exceed 20 cells in height. One is referred to as Eristophyton sp.; the second, characterized by ray cells showing a wide range of sizes and shapes is assigned to Aporoxylon primigenium. These records extend the stratigraphical range of Protopitys and Eristophyton down to the middle Tournaisian and confirm their great longevity through most of the Mississippian. They suggest that the diversity of putative arborescent lignophytes co-occurring with Archaeopteris around the D/C boundary but surviving successfully above this limit has been underestimated
Modeling the Radiative Signatures of Turbulent Heating in Coronal Loops
The statistical properties of the radiative signature of a coronal loop subject to turbulent heating obtained from a three-dimensional (3D) magnetohydrodynamics (MHD) model are studied. The heating and cooling of a multistrand loop is modeled and synthetic spectra for Fe XII 195.12, Fe XV 284.163, and Fe XIX 1118.06 ? are calculated, covering a wide temperature range. The results show that the statistical properties of the thermal and radiative energies partially reflect those of the heating function in that power-law distributions are transmitted, but with very significant changes in the power-law indices. There is a strong dependence on the subloop geometry. Only high-temperature radiation (?107 K) preserves reasonably precise information on the heating function
- …