241 research outputs found

    Наноразмерные дискретные покрытия оксида меди на кристаллах хлорида натрия, осажденные из паровой фазы в вакууме

    Get PDF
    Приведены результаты исследования морфологии дискретного наноразмерного медного покрытия на поверхности порошка хлорида натрия. Способом электронно-лучевого испарения и конденсации из паровой фазы в вакууме получено равномерное и однородное покрытие. Средний размер частиц меди согласно результатам лазерной корреляционной спектроскопии составил 27 нм. Представлены рекомендации относительно возможного практического применения.The results of investigation of morphology of discrete nanodimensional copper coating on the surface of sodium chloride powder are presented. Uniform and homogeneous coating was produced by the method of electron beam evaporation and condensation from vapor phase in vacuum. The obtained average size of copper particles in accordance with results of a laser correlation spectroscopy was 27 nm. Recommendations are given for a possible practical application

    WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity

    Get PDF
    AbstractAlthough it is well established that the WAVE/SCAR complex transduces Rac1 signaling to trigger Arp2/3-dependent actin nucleation, regulatory mechanisms of this complex and its versatile function in the nervous system are poorly understood. Here we show that the Drosophila proteins SCAR, CYFIP and Kette, orthologs of WAVE/SCAR complex components, all show strong accumulation in axons of the central nervous system and indeed form a complex in vivo. Neuronal defects of SCAR, CYFIP and Kette mutants are, despite the initially proposed function of CYFIP and Kette as SCAR silencers, indistinguishable and are as diverse as ectopic midline crossing and nerve branching as well as synapse undergrowth at the larval neuromuscular junction. The common phenotypes of the single mutants are readily explained by the finding that loss of any one of the three proteins leads to degradation of its partners. As a consequence, each mutant is unambiguously to be judged as defective in multiple components of the complex even though each component affects different signaling pathways. Indeed, SCAR-Arp2/3 signaling is known to control axonogenesis whereas CYFIP signaling to the Fragile X Mental Retardation Protein fly ortholog contributes to synapse morphology. Thus, our results identify the Drosophila WAVE/SCAR complex as a multifunctional unit orchestrating different pathways and aspects of neuronal connectivity

    Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage

    Get PDF
    ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substances, ranging from peptides to lipids, across cell or organelle membranes. In peroxisomes, a subfamily of four ABC transporters (ABCD1 to ABCD4) has been related to fatty acid transport, because patients with mutations in ABCD1 (ALD gene) suffer from X-linked adrenoleukodystrophy (X-ALD), a disease characterized by an accumulation of very-long-chain fatty acids (VLCFAs). Inactivation in the mouse of the abcd1 gene leads to a late-onset neurodegenerative condition, comparable to the late-onset form of X-ALD [Pujol, A., Hindelang, C., Callizot, N., Bartsch, U., Schachner, M. and Mandel, J.L. (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum. Mol. Genet., 11, 499-505.]. In the present work, we have generated and characterized a mouse deficient for abcd2, the closest paralog to abcd1. The main pathological feature in abcd2−/− mice is a late-onset cerebellar and sensory ataxia, with loss of cerebellar Purkinje cells and dorsal root ganglia cell degeneration, correlating with accumulation of VLCFAs in the latter cellular population. Axonal degeneration was present in dorsal and ventral columns in spinal cord. We have identified mitochondrial, Golgi and endoplasmic reticulum damage as the underlying pathological mechanism, thus providing evidence of a disturbed organelle cross-talk, which may be at the origin of the pathological cascad

    Spatial control of nucleoporin condensation by fragile X-related proteins

    Get PDF
    Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation
    corecore