219 research outputs found

    Finite element modeling and experimental verification of lightweight steel floor vibration

    Get PDF
    Due to the lack of design standard and the difficulty of analysis, the floor vibration analysis of lightweight steel floors has received less attention than the analysis of typical floor structures. In this paper, the finite element model for lightweight steel floors is presented utilizing the rigid link and realistic support restraints. The rigid rink is used to solve the problem of difference in the centroid of beam, joist, and flooring material and to guarantee the same behavior of those members. Two different support restraints, all fixed restraint and mixture of fixed and released restraint, are used in the analysis. The finite element model is verified through the human impact loading test of the full-scale light-weight steel floors that have different joist condition and middle beam. The finite element analysis results indicate that the different joists having same moment of inertia yield similar natural frequencies, while the test results of full-scale floors show that the floor with the closed shaped joists yields higher natural frequency than the floor with open shaped joists. The test results also indicate that the finite element analysis using the mixture of fixed and released support restraint yields closer natural frequencies to those of actual floors

    A standardized extract of Rhynchosia volubilis Lour. exerts a protective effect on benzalkonium chloride-induced mouse dry eye model

    Get PDF
    ETHNOPHARMACOLOGICAL RELEVANCE In contrast to other leguminous plants generally used as food, Rhynchosia volubilis Loureiro, a small soybean with a black seed coat, has been used as a traditional oriental remedy for various human diseases in Eastern Asia. In this study, we demonstrated the protective effect of R. volubilis against dry eye disease. AIM OF THE STUDY We aimed to investigate whether a standardized ethanol extract of R. volubilis (EERV) can protect the cornea in a benzalkonium chloride (BAC)-induced mouse dry eye model. MATERIALS AND METHODS Experimental dry eye was induced by the instillation of 0.2% BAC on mouse cornea. A standardized ethanol extract of R. volubilis (EERV) was orally administered following BAC treatment. The positive control group was treated with commercial eye drops. Fluorescein staining, tear break-up time (BUT), and hematoxylin and eosin staining were evaluated on the ocular surface. Squamous metaplasia and apoptosis in the corneal epithelial layer were detected by immunostaining. Furthermore, the protein expression of cytochrome c, Bcl-2, and Bax was determined. RESULTS EERV treatment significantly improved fluorescein scoring, BUT, and smoothness in the cornea compared to the vehicle group. In addition, EERV inhibited squamous metaplasia and apoptosis in the cornea. The expression of cytochrome c and Bax was upregulated, while that of Bcl-2 was downregulated in the vehicle group compared with that in the control group. However, EERV treatment inhibited the expression of cytochrome c and Bax, while that of Bcl-2 was improved. CONCLUSION Standardized EERV could be a beneficial candidate for the treatment of dry eye disease

    Unconventional anomalous Hall effect from antiferromagnetic domain walls of N d2 i r2 O7 thin films

    Get PDF
    Ferroic domain walls (DWs) create different symmetries and ordered states compared with those in single-domain bulk materials. In particular, the DWs of an antiferromagnet with noncoplanar spin structure have a distinct symmetry that cannot be realized in those of their ferromagnet counterparts. In this paper, we show that an unconventional anomalous Hall effect (AHE) can arise from the DWs of a noncoplanar antiferromagnet, Nd2Ir2O7. Bulk Nd2Ir2O7 has a cubic symmetry; thus, its Hall signal should be zero without an applied magnetic field. The DWs generated in this material break the twofold rotational symmetry, which allows for finite anomalous Hall conductivity. A strong f-d exchange interaction between the Nd and Ir magnetic moments significantly influences antiferromagnetic (AFM) domain switching. Our epitaxial Nd2Ir2O7 thin film showed a large enhancement of the AHE signal when the AFM domains switched, indicating that the AHE is mainly due to DWs. Our paper highlights the symmetry-broken interface of AFM materials as a means of exploring topological effects and their relevant applications. © 2018 American Physical Societ

    Epstein-Barr Virus, Beta-Catenin, and E-cadherin in Gastric Carcinomas

    Get PDF
    Activated beta-catenin is suggested to inhibit NF-kappaB activation, and we previously demonstrated that NF-kappaB nuclear positivity was more frequent in Epstein-Barr virus (EBV)-infected gastric carcinomas. It is controversial that beta-catenin and E-cadherin are prognostic markers in gastric carcinomas. To define a relationship between beta-catenin and EBV, and the prognostic value of beta-catenin and E-cadherin, we analyzed in situ hybridization for EBV-encoded small RNAs, beta-catenin, and E-cadherin immunohistochemistry, and clinicophatological features in 111 gastric carcinomas. EBV infection was detected in seven carcinomas (6.3%); none of seven showed beta-catenin nuclear accumulation, and five out of seven revealed beta-catenin membranous loss or cytoplamic expression. Eighty cases (72.1%) showed beta-catenin alteration; i.e., loss of membrane staining in 65 (58.6%), cytoplasmic expression in 35 (31.5%), and nuclear accumulation in 15 (13.5%). E-cadherin alteration was observed in 34 cases (30.6%) and correlated with beta-catenin alteration. On multivariate analysis, the combined immunoexpression group of beta-catenin nuclear accumulation/ E-cadherin alteration and the advanced TNM cancer stage group showed poor patient's survival (p<0.05). In conclusion, beta-catenin activation through nuclear accumulation hardly occurred in EBV-infected gastric carcinomas. The combined immunoexpression pattern of beta-catenin and E-cadherin can be used as a prognostic marker in gastric carcinomas

    Improvement of osseointegration of Ti–6Al–4V ELI alloy orthodontic mini-screws through anodization, cyclic pre-calcification, and heat treatments

    Get PDF
    Abstract Background Mini-screws are widely used as temporary anchorages in orthodontic treatment, but have the disadvantage of showing a high failure rate of about 10%. Therefore, orthodontic mini-screws should have high biocompatibility and retention. Previous studies have demonstrated that the retention of mini-screws can be improved by imparting bioactivity to the surface. The method for imparting bioactivity proposed in this paper is to sequentially perform anodization, periodic pre-calcification, and heat treatments with a Ti–6Al–4V ELI alloy mini-screw. Materials and methods A TiO2 nanotube-structured layer was formed on the surface of the Ti–6Al–4V ELI alloy mini-screw through anodization in which a voltage of 20V was applied to a glycerol solution containing 20 wt% H2O and 1.4 wt% NH4F for 60min. Fine granular calcium phosphate precipitates of HA and octacalcium phosphate were generated as clusters on the surface through the cyclic pre-calcification and heat treatments. The cyclic pre-calcification treatment is a process of immersion in a 0.05M NaH2PO4 solution and a saturated Ca(OH)2 solution at 90°C for 1min each. Results It was confirmed that the densely structured protrusions were precipitated, and Ca and P concentrations, which bind and concentrate endogenous bone morphogenetic proteins, increased on the surface after simulated body fluid (SBF) immersion test. In addition, the removal torque of the mini-screw fixed into rabbit tibias for 4weeks was measured to be 8.70 ± 2.60Ncm. Conclusions A noteworthy point in this paper is that the Ca and P concentrations, which provide a scaffold suitable for endogenous bone formation, further increased over time after SBF immersion of the APH group specimens. The other point is that our mini-screws have a significantly higher removal torque compared to untreated mini-screws. These results represent that the mini-screw proposed in this paper can be used as a mini-screw for orthodontics

    Compensatory proliferation of endogenous chicken primordial germ cells after elimination by busulfan treatment

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction Primordial germ cells (PGCs) are the major population of cells in the developing bilateral embryonic gonads. Little is known about the cellular responses of PGCs after treatment with toxic chemicals such as busulfan during embryo development. In this study, we investigated the elimination, restorative ability, and cell cycle status of endogenous chicken PGCs after busulfan treatment. Methods Busulfan was emulsified in sesame oil by a dispersion-emulsifying system and injected into the chick blastoderm (embryonic stage X). Subsequently, we conducted flow cytometry analysis to evaluate changes in the PGC population and cell cycle status, and immunohistochemistry to examine the germ cell proliferation. Results Results of flow cytometry and immunohistochemistry analyses after busulfan treatment showed that the proportion of male PGCs at embryonic day 9 and female PGCs at embryonic day 7 were increased by approximately 60% when compared with embryonic day 5.5. This result suggests the existence of a compensatory mechanism in PGCs in response to the cytotoxic effects of busulfan. Results of cell cycling analysis showed that the germ cells in the G0/G1 phase were significantly decreased, while S/G2/M-phase germ cells were significantly increased in the treatment group compared with the untreated control group in both 9-day-old male and female embryos. In addition, in the proliferation analysis with 5-ethynyl-2′-deoxyuridine (EdU) incorporation, we found that the proportion of EdU-positive cells among VASA homolog-positive cells in the 9-day embryonic gonads of the busulfan-treated group was significantly higher than in the control group. Conclusions We conclude that PGCs enter a restoration pathway by promoting their cell cycle after experiencing a cytotoxic effect

    The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)

    Full text link
    We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure
    corecore