5 research outputs found

    Dynamic pricing of servers on trees

    Get PDF
    In this paper we consider the k-server problem where events are generated by selfish agents, known as the selfish k-server problem. In this setting, there is a set of k servers located in some metric space. Selfish agents arrive in an online fashion, each has a request located on some point in the metric space, and seeks to serve his request with the server of minimum distance to the request. If agents choose to serve their request with the nearest server, this mimics the greedy algorithm which has an unbounded competitive ratio. We propose an algorithm that associates a surcharge with each server independently of the agent to arrive (and therefore, yields a truthful online mechanism). An agent chooses to serve his request with the server that minimizes the distance to the request plus the associated surcharge to the server. This paper extends [9], which gave an optimal k-competitive dynamic pricing scheme for the selfish k-server problem on the line. We give a k-competitive dynamic pricing algorithm for the selfish k-server problem on tree metric spaces, which matches the optimal online (non truthful) algorithm. We show that an α-competitive dynamic pricing scheme exists on the tree if and only if there exists α-competitive online algorithm on the tree that is lazy and monotone. Given this characterization, the main technical difficulty is coming up with such an online algorithm

    Unbounded lower bound for k-server against weak adversaries

    Get PDF
    We study the resource augmented version of the k-server problem, also known as the k-server problem against weak adversaries or the (h,k)-server problem. In this setting, an online algorithm using k servers is compared to an offline algorithm using h servers, where h ≤ k. For uniform metrics, it has been known since the seminal work of Sleator and Tarjan (1985) that for any ">0, the competitive ratio drops to a constant if k=(1+") · h. This result was later generalized to weighted stars (Young 1994) and trees of bounded depth (Bansal et al. 2017). The main open problem for this setting is whether a similar phenomenon occurs on general metrics. We resolve this question negatively. With a simple recursive construction, we show that the competitive ratio is at least ω(loglogh), even as k→∞. Our lower bound holds for both deterministic and randomized algorithms. It also disproves the existence of a competitive algorithm for the infinite server problem on general metrics
    corecore