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Abstract We give a memoryless scale-invariant randomized algorithm REMIX for
Packet Scheduling that is e/(e − 1)-competitive against an adaptive adversary.
REMIX unifies most of previously known randomized algorithms, and its general
analysis yields improved performance guarantees for several restricted variants, in-
cluding the s-bounded instances. In particular, REMIX attains the optimum competi-
tive ratio of 4/3 on 2-bounded instances.

Our results are applicable to a more general problem, called Item Collection, in
which only the relative order between packets’ deadlines is known. REMIX is the op-
timal memoryless randomized algorithm against adaptive adversary for that problem.

Keywords Online algorithms · Competitive analysis · Adaptive adversary · Packet
scheduling · Buffer management with bounded delay

1 Introduction

In this paper, we consider the problem of Packet Scheduling, introduced by Kessel-
man et al. [14] (under the name Buffer Management with Bounded Delay). This prob-
lem models the behavior of a single network switch responsible for scheduling packet
transmissions along an outgoing link as follows. We assume that time is divided into
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unit-length steps. At the beginning of a time step, any number of packets may arrive
at a switch and be stored in its buffer. Each packet has a positive weight, correspond-
ing to the packet’s priority, and a deadline, which specifies the latest time when the
packet can be transmitted. Only one packet from the buffer can be transmitted in a sin-
gle step. A packet is removed from the buffer upon transmission or expiration, i.e.,
reaching its deadline. The goal is to maximize the gain, defined as the total weight of
the packets transmitted.

As many others, we prefer to call the problem Packet Scheduling since it is equiv-
alent to a single machine scheduling of unit-length jobs, with given weights, release
times and deadlines; the last two restricted to integer values. In this setting, the goal
is to maximize the total weight of jobs completed before their respective deadlines.

As the process of managing a packet queue is inherently a real-time task, we model
it as an online problem. This means that the algorithm, when deciding which packets
to transmit, has to base its decision solely on the packets which have already arrived
at a switch, without the knowledge of the future.

1.1 Competitive Analysis

To measure the performance of an online algorithm, we use the standard notion of
competitive analysis [5], which, roughly speaking, compares the gain of the algorithm
to the gain of the optimal solution on the same instance. For any algorithm ALG, we
denote its gain on instance I by GALG(I ). The optimal offline algorithm is denoted by
OPT. We say that a deterministic algorithm ALG is R-competitive if on any instance I

it holds that GALG(I ) ≥ 1
R · GOPT(I ).

When analyzing the performance of an online algorithm ALG, we view the process
as a game between ALG and an adversary. The adversary creates the instance on
the one hand, i.e., controls what packets are injected into the buffer, and solves the
instance optimally on the other, i.e., chooses its packets for transmission. The goal is
then to show that the adversary’s gain is at most R times ALG’s gain.

If the algorithm is randomized, we consider its expected gain, E[GALG(I )], where
the expectation is taken over all possible random choices made by ALG. However, in
the randomized case, the power of the adversary has to be further specified. Follow-
ing Ben-David et al. [2], we distinguish between an oblivious and an adaptive-online
adversary, called adaptive for shortness from now on. An oblivious adversary has to
construct the whole instance in advance. This instance may depend on ALG but not
on the random bits used by ALG during the computation. The expected gain of ALG

is compared to the gain of the optimal offline solution on I . In contrast, in case of an
adaptive adversary, the choice of packets to be injected into the buffer may depend on
the algorithm’s behavior up to the given time step. This adversary must also provide
an answering entity ADV, which creates a solution in parallel to ALG. This solu-
tion may not be changed afterwards. We say that ALG is R-competitive against an
adaptive adversary if for any adaptively created instance I and any answering algo-
rithm ADV, it holds that E[GALG(I )] ≥ 1

R · E[GADV(I )]. We note that ADV is (wlog)
deterministic, but as ALG is randomized, so is the instance I .

In the literature on online algorithms [5], the definition of the competitive ratio
sometimes allows an additive constant, i.e., a deterministic algorithm is then called
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R-competitive if there exists a constant α ≥ 0 such that for any instance I it holds
that GALG(I ) ≥ 1

R · GOPT(I ) − α. An analogous definition applies to the randomized
case. For our algorithm REMIX the bound holds for α = 0, which is the best possible.

1.2 Basic Definitions

For a packet j , we denote its: weight by wj , relative deadline by dj , absolute dead-
line by Dj , and release time by rj . The absolute deadline is the exact point in time
at which the packet expires, whereas the relative deadline is, at any time, the number
of further steps after which the packet expires. To avoid nested subscripts we will use
slightly different notation for sequences of packets: when considering a sequence of
packets j1, j2, . . . , jn, instead of xji

(where x ∈ {d,D, r,w}), we simply write xi . We
also denote a packet of weight w and relative deadline d by (w,d). A packet that is in
the buffer, i.e., has already been released and has neither expired nor been transmitted
by an algorithm, is called pending for the algorithm. The lifespan of a packet is its
relative deadline value upon injection, or in other words the difference between its
absolute deadline and release time.

The goal is to maximize the weighted throughput, i.e., the total weight of trans-
mitted packets. We assume that time is slotted in the following way. We distinguish
between points in time and time intervals, called steps. In step t , corresponding to
the interval (t, t + 1), ADV and the algorithm choose, independently, a packet from
their buffers and transmit it. The packet transmitted by the algorithm (ADV) is im-
mediately removed from its buffer and no longer pending. Afterwards, at time t + 1,
the relative deadlines of all remaining packets are decremented by 1, and the packets
whose relative deadlines reach 0 expire and are removed from both ADV’s and the
algorithm’s buffers. Next, the adversary injects any set of packets. At this point, we
proceed to step t + 1.

All known algorithms are scale-invariant, which means that they make the same
decisions if all the weights of packets in an instance are scaled by a positive constant.
A class of further restricted algorithms is of special interest for their simplicity: an
algorithm is memoryless if in every step its decision depends only on the set of packets
pending at that step.

1.3 Previous and Related Work, Restricted Variants

The currently best, 1.828-competitive, deterministic algorithm for general instances
was given by Englert and Westermann [9]. Their algorithm is scale-invariant, but
it is not memoryless. However, the same article provides a 1.893-competitive vari-
ant that is memoryless scale-invariant. The best known randomized algorithm is the
1.582-competitive memoryless scale-invariant RMIX, proposed by Chin et al. [6].
For reasons explained in Sect. 2.1 the original analysis by Chin et al. is only applica-
ble to the oblivious adversary model. However, a refined analysis shows that RMIX

remains 1.582-competitive in the adaptive adversary model [4].
The greedy algorithm (which always transmits the heaviest pending packet) has

competitive ratio exactly 2 [12, 14], i.e., this memoryless scale-invariant algorithm
is 2-competitive and no better than that. For a few years, no better deterministic al-
gorithm for the general case was known, which led to a study of many restricted
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Table 1 Comparison of known and new results. All the upper bounds in the middle column (randomized
algorithms for adaptive adversary model) follow from this article, as does (cf. Sect. 3) the one for similarly
ordered instances in oblivious adversary model; a reference next to one of these entries means that this
particular bound was already known. The results without citations are implied by other entries of the table.
An asterisk denotes that the algorithm attaining the bound is memoryless scale-invariant

deterministic (rand.) adaptive (rand.) oblivious

general upper 1.828 [9], 1.893∗ [9] 1.582∗ [4] 1.582∗ [6]

lower 1.618 1.333 1.25

similarly
ordered

upper 1.618∗ [16] 1.582∗ 1.333∗ [13]

lower 1.618 1.333 1.25

s-bounded upper 2 − 2
s + o( 1

s )∗ [6] 1/(1 − (1 − 1
s )s )∗ 1/(1 − (1 − 1

s )s )∗
lower 1.618 1.333 1.25

2-bounded upper 1.618∗ [14] 1.333∗ [4] 1.25∗ [6]

lower 1.618 [7, 12, 18] 1.333 [4] 1.25 [7]

variants. Below we present some of them, together with known results. The most rel-
evant bounds known are summarized in Table 1. Note that the majority of algorithms
are memoryless scale-invariant.

For a general overview of techniques and results on buffer management, see the
surveys by Azar [1], Epstein and Van Stee [10] and Goldwasser [11].

Uniform Sequences An instance is s-uniform if the lifespan of each packet is ex-
actly s. Such instances have been considered for two reasons. Firstly, there is a con-
nection between them and the FIFO model of buffer management, also considered
by Kesselmann et al. [14] (the connection itself stated in Corollary 5.5 therein). Sec-
ondly, the 2-uniform instances are among the most elementary restrictions that do
not render the problem trivial. However, analyzing these sequences is not easy: while
a simple deterministic

√
2-competitive algorithm for 2-uniform instances [18] is op-

timal among memoryless scale-invariant algorithms [6], for unrestricted algorithms,
a sophisticated analysis shows the optimum competitive ratio is 1.377 [8].

Bounded Sequences An instance is s-bounded if the lifespan of each packet is at
most s; therefore every s-uniform instances is also s-bounded. The 2-bounded in-
stances give rise to the strongest currently known lower bounds. These are φ ≈ 1.618
for deterministic algorithms [7, 12, 18], 1.25 for randomized algorithms in the oblivi-
ous adversary model [7], and 4/3 in the adaptive adversary model [4]. For 2-bounded
instances, algorithms matching these bounds are known [4, 6, 14]. A family of deter-
ministic algorithms EDFβ is 2 − 2

s
+ o( 1

s
)-competitive for s-bounded instances [6];

β is a parameter suitably chosen as a function of s. Detailed analysis reveals that the
φ-competitive deterministic algorithm for 2-bounded instances, itself a member of
the EDFβ family, remains 3-competitive also on 3-bounded instances [6]. However,
these algorithms’ competitive ratio guarantees present an improvement over Englert
and Westermann’s algorithm only for small values of s.
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Similarly Ordered Sequences An instance is similarly ordered or has agreeable
deadlines if for every two packets i and j their spanning intervals are not properly
contained in one another, i.e., if ri < rj implies Di ≤ Dj . Note that every 2-bounded
instance is similarly ordered, as is every s-uniform instance, for any s. An optimal
deterministic φ-competitive algorithm [16] and a randomized 4/3-competitive algo-
rithm for the oblivious adversary model (as well as an alternative optimal determin-
istic algorithm) [13] are known for similarly ordered instances.

Other Restrictions There are many other meaningful restricted variants of the prob-
lem, for which better algorithms are known. Interestingly, one of the optimal de-
terministic algorithms for similarly ordered instances [16] performs well in several
restricted instance classes [15] (the performance of the other algorithm [13] was not
studied). Let us mention one class of instances, studied by Kesselmann et al. in their
seminal paper [14], for which our algorithm provides additional bounds: as various
transmission protocols usually specify only several priorities for packets, it is sensible
to bound the number of different packet weights.

Generalization: Collecting Weighted Items from a Dynamic Queue The following
generalization of Packet Scheduling has been studied [3], and called Item Collection
by its authors. In Item Collection the algorithm is to collect weighted items, one per
step, from a dynamic queue S, which is in fact an ordered list. The content of S

varies over time, as it is updated between any two consecutive time steps. Such an
update is performed by an external agent (the adversary), and consists of deleting any
number of items at the front of S (a prefix of S) and inserting new items into arbitrary
locations in S. Note that the collection is the algorithm’s action, not a queue update.
However, the algorithm is allowed to collect an item only once, and only while it is
in the queue. The objective is to maximize the total weight of the collected items.

Item Collection is easily seen to generalize Packet Scheduling: let the items in the
queue correspond to packets, their locations in S determined by non-decreasing order
of their deadlines, with ties broken arbitrarily. These items have the same weights
as their corresponding packets, are inserted upon their release, and deleted upon
expiration—ordering by deadlines ensures that a prefix of S is deleted.

Note that in Item Collection the algorithm does not know how many steps will
lapse between deletions of two successive items in its queue—this is why ties between
packets’ deadlines are broken arbitrarily in the reduction.

Some of the algorithms for Packet Scheduling extend to Item Collection, for exam-
ple the greedy algorithm, which ignores the deadlines altogether. In general, any algo-
rithm for Packet Scheduling that only compares packets’ deadlines, without resorting
to their exact values, and can thus be presented with a list of packets ordered by their
deadlines, extends to Item Collection. Among such algorithms are the EDFβ algo-
rithms, RMIX, and our algorithm REMIX—reader is advised to keep this in mind,
because we present it for the more popular setting of Packet Scheduling.

While the paper of Bienkowski’s et al. [3] focuses on deterministic algorithms
for Item Collection, it does provide a lower bound for memoryless randomized algo-
rithms, matched by REMIX, cf. Sect. 5.3.
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1.4 Our Contribution

We consider randomized algorithms against an adaptive adversary, motivated by the
following observation. In reality, traffic through a switch is not at all independent of
the packet scheduling algorithm. For example, lost packets are typically resent, and
throughput through a node affects the choice of routes for data streams in a network.
These phenomena can be captured by the adaptive adversary model but not by the
oblivious one. The adaptive adversary model is also of its own theoretical interest
and has been studied in other settings [5].

The main contribution of this paper is a simple memoryless scale-invariant algo-
rithm REMIX, which unifies most of previously known randomized algorithms for
Packet Scheduling. It also applies to the generalized Item Collection problem, for
which it is optimal among memoryless randomized algorithms, cf. Sect. 5.3. As its
name reflects, REMIX is very similar to RMIX, proposed by Chin et al. [6]. The only,
yet crucial difference between these two algorithms is the transmission’s probability
distribution over pending packets. While RMIX is essentially the EDFβ algorithm
with β chosen in each step according to a fixed (same in every step) probability dis-
tribution, it is no longer so in REMIX.

This subtle change allows a refined analysis of REMIX, which yields an upper
bound on the algorithm’s competitive ratio that depends on the maximum number
of packets, over all steps, that have positive probability of transmission in the step.
Specifically, if we denote that number by N , our upper bound on the competitive
ratio of REMIX is f (n) = 1/(1 − (1 − 1

N
)N). Note that f (N) tends to e/(e − 1)

from below. The number N can be bounded a priori in certain restricted variants
of Packet Scheduling, thus giving better bounds for them. Specifically, it is easily
observed that N ≤ s in instances with at most s different packet weights as well as
in s-bounded instances. The particular upper bound of 4/3 we obtain for 2-bounded
instances (known before) is optimal in the adaptive adversary model [4]; the bounds
for s-bounded instances and s > 2 (in both oblivious and adaptive adversary model)
are new. Certain structural properties of optimum schedules for similarly ordered
instances imply that N ≤ 2 for that class of instances as well, at least in the oblivious
adversary model, yielding an upper bound of 4/3 (also known before [13]). While
details are given in Sect. 3, most of the implications are summarized in Table 1.

2 General Upper Bound

2.1 Analysis Technique

In our analysis, we follow the paradigm of modifying ADV’s buffer, introduced by
Li et al. [16] (the development of this technique is covered in Sect. 4). Namely, we
assume that in each step REMIX and ADV have precisely the same packets in their
buffers. Once they both transmit a packet, we modify ADV’s buffer judiciously to
make it identical with that of REMIX. This leads to a streamlined and intuitive proof.

When modifying the buffer, we may have to let ADV transmit another packet,
inject an extra packet to his buffer, or upgrade one of the packets in its buffer by
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increasing its weight or deadline. We ensure that these changes are advantageous to
the adversary in the following sense: for any adversary strategy ADV, starting with
the current step and buffer content, there is an adversary strategy ADV that continues
computation with the modified buffer, such that the total gain of ADV in this and the
following steps, on any instance, is at least as large as that of ADV.

To prove R-competitiveness, we show that in each step the expected amortized
gain of ADV is at most R times the expected gain of REMIX, where the former is
the total weight of the packets that ADV eventually transmitted in this step. Both
expected values are taken over random choices of REMIX.

We are going to assume that ADV never transmits a packet a if there is another
pending packet b such that ADV is always better off by transmitting b. Formally,
we introduce a dominance relation among the pending packets and assume that ADV

never transmits a dominated packet.
We say that a packet a = (wa, da) is dominated by a packet b = (wb, db) at time t

if at time t both a and b are pending, wa ≤ wb and da ≥ db. If one of these inequalities
is strict, we say that a is strictly dominated by b. We also say that packet a is (strictly)
dominated at time t if at that time there is a pending packet b that (strictly) dominates
it. When a packet a is not strictly dominated, we call it a non-dominated packet
(observe that a dominates itself). In Item Collection setting, a is dominated by b if b

precedes a in the queue and wb ≥ wa ; there is no distinction between dominance and
strict dominance in Item Collection, since there are no ties between deadlines there.

Fact 1 For any adversary strategy ADV, there is a strategy ADV such that:

(i) the gain of ADV on every sequence is at least the gain of ADV,
(ii) ADV transmits a non-dominated packet in every step.

Proof ADV can be transformed into ADV by applying an exchange argument itera-
tively: take the minimum t0 such that ADV first violates (ii) in step t0, and transform
ADV into an algorithm ADV′ with gain no smaller than that of ADV, which satis-
fies (ii) up to step t0, possibly violating it in further steps.

Let t0 be the first step in which (ii) is violated. Let y = (w,d) be the packet trans-
mitted by ADV and x = (w′, d ′) be a packet that strictly dominates y; then w′ ≥ w

and d ′ ≤ d . Let ADV′ transmit the same packets as ADV up to step t0 − 1, but in step
t0 let it transmit x, and in the remaining steps let it try to transmit the same packets
as ADV. It is impossible in one case only: when ADV transmits x in some step t . But
then d ≥ d ′ > t , so let ADV′ transmit y, still pending at t . Clearly, (i) is preserved. �

The proof trivially extends to Item Collection.
We stress that Fact 1 holds for both oblivious and adaptive adversary model. Now

we give an example of another simplifying assumption, common in the oblivious
adversary model, which seems to break down in the adaptive adversary model.

In the oblivious adversary model the instance is fixed in advance by the adver-
sary, so ADV may precompute the optimum schedule to the instance and follow it.
Moreover, by standard exchange argument for the fixed set of packets to be transmit-
ted, ADV may always send the packet with the smallest deadline from that set—this is
usually called the earliest deadline first (EDF) property or order. This assumption not
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only simplifies analyses of algorithms but is often crucial for them to yield desired
bounds [6, 8, 13, 16].

In the adaptive adversary model, however, the following phenomenon occurs: as
the instance I is randomized, ADV does not know for sure which packets it will
transmit in the future. Consequently, deprived of that knowledge, it cannot ensure
any specific order of packet transmissions. For example, it might be the case that
in one step ADV decides to transmit a packet x, and, depending on the outcome of
the algorithm’s random choice, in the next step ADV might transmit either y or z,
both pending for ADV already in the previous step, such that the deadlines of the
three packets satisfy Dy < Dx < Dz. This example is elusive: while we are unable
to preclude adversarial strategies of this kind, we are equally unable to come up with
a specific instance where they would not be dominated by other adversarial strategies.

2.2 Algorithm and Its Analysis

Our algorithm roughly works as follows. In each step it finds a maximum chain of
non-dominated pending packets h1, h2, . . . , hm, in decreasing order of weights, such
that together they dominate all pending packets. By Fact 1, we may assume that ADV

transmits one of those packets. REMIX chooses one of them at random, according
to an appropriate probability distribution. The distribution is devised in such a way
that the expected gain of REMIX in a step is on the one hand close to the maximum
possible gain of ADV in that step, i.e., w(h1), but on the other hand it is spread over
the whole chain to obfuscate the adversary. Details are presented in Algorithm 1.

We introduce the packet h0 to shorten REMIX’s pseudocode. The packet itself
is chosen in such a way that p0 = 0, to make it clear that it is not considered for
transmission (unless h0 = h1). The while loop itself could be terminated as soon as
r = 0, because afterwards REMIX does not assign positive probability to any packet.
However, letting it construct the whole sequence h1, h2, . . . hm such that Hm = ∅
streamlines our analysis. Before proceeding, we note that these easily follow from
the algorithm.

Fact 2 The sequence of packets h0, h1, . . . , hm selected by REMIX satisfies

w0 = w1 > w2 > · · · > wm, (1)

d0 ≥ d1 > d2 > · · · > dm. (2)

Furthermore, every pending packet is dominated by one of h1, . . . , hm.

Fact 3 The numbers p1,p2, . . . , pm form a probability distribution such that

pi ≤ 1 − wi+1

wi

for all i < m. (3)

Furthermore, the bound is tight for i < n, while pi = 0 for i > n, i.e.,

pi =
{

1 − wi+1
wi

, for i < n

0, for i > n
(4)
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Algorithm 1 REMIX (single step)
1: if there are no pending packets then
2: do nothing and proceed to the next step
3: end if
4: m ← 0 � counts non-dominated packets
5: n ← 0 � counts packets with positive probability assigned
6: r ← 1 � unassigned probability
7: H0 ← pending packets
8: h0 = (w0, d0) ← heaviest packet from H0
9: while Hm �= ∅ do

10: m ← m + 1
11: hm = (wm,dm) ← heaviest non-dominated packet from Hm−1
12: pm−1 ← min{1 − wm

wm−1
, r}

13: r ← r − pm−1
14: if r > 0 then
15: n ← n + 1
16: end if
17: Hm ← {x ∈ Hm−1 | x is not dominated by hm}
18: end while
19: pm ← r

20: transmit h chosen from h1, . . . , hn with probability distribution p1, . . . , pn

21: proceed to the next step

With these, we can prove our main result.

Theorem 1 REMIX is 1/(1− (1− 1
N

)N)-competitive against an adaptive adversary,
where N is the maximum number of packets, over all steps, that are assigned positive
probability in a step.

Proof To prove the theorem, we will describe, for any given step, the changes to
ADV’s scheduling decisions and modifications to its buffer that make it the same as
REMIX’s buffer. These, as explained in Sect. 2.1, affect the adversary’s amortized
gain. Having specified those, we will show that the expectations of the adversary’s
amortized gain and the algorithm’s gain satisfy

E[GADV] ≤ w1, (5)

E[GREMIX] ≥ w1

(
1 −

(
1 − 1

n

)n)
, (6)

where n is the number of packets assigned positive probability in the step. The theo-
rem follows by summation over all steps.

We begin by describing modifications to ADV’s buffer. To this end, recall that,
by Fact 1, ADV (wlog) sends a packet that is non-dominated. By Fact 2, the packets
h1, h2, . . . hm dominate all pending packets, so the one sent by ADV, say p, is (wlog)
one of h1, h2, . . . hm: if p is dominated by hi , but not strictly dominated, then p has



Algorithmica (2013) 67:498–515 507

the same weight and deadline as hi . The modifications to ADV’s buffer depend on the
relation between the two non-dominated packets that ADV and REMIX transmit in
the step. Suppose that ADV transmits hz = (wz, dz) whereas REMIX transmits (the
randomly chosen) hf = (wf , df ), respectively. Then there are two cases.

Case 1: df ≤ dz. Note that in this case wf ≤ wz, since hz is non-dominated. After
both ADV and REMIX transmit their packets, we replace hf in the buffer of
ADV by a copy of hz. This way their buffers remain the same afterwards, and the
change is advantageous to ADV: this is essentially an upgrade of the packet hf in
its buffer, as both df ≤ dz and wf ≤ wz hold.

Case 2: df > dz. After both ADV and REMIX transmit their packets, we let ADV

additionally transmit hf , and we inject a copy of hz into its buffer, both of which
are clearly advantageous to ADV. This makes the buffers of ADV and REMIX

identical afterwards.

Now that we have specified the modifications, we can bound the adversary’s ex-
pected amortized gain, i.e., prove (5), For convenience, denote the amortized gain of
ADV when it transmits hz by G(z)

ADV. Clearly, G(z)
ADV is a random variable that equals

wz + wf if dz < df (equivalently, z > f ), and wz otherwise. Thus, when ADV trans-
mits hz, its expected amortized gain is

E
[

G(z)
ADV

] = wz +
∑
i<z

piwi. (7)

As the adversary’s expected amortized gain satisfies

E[GADV] ≤ max
1≤j≤m

{
E

[
G(j)

ADV

]}
, (8)

to establish (5), we will prove that

max
1≤j≤m

{
E

[
G(j)

ADV

]} ≤ G(1)
ADV = w1. (9)

The equality in (9) follows trivially from (7). To see that the inequality in (9) holds
as well, observe that, by (7), for all j < m,

E
[

G(j)

ADV

] − E
[

G(j+1)

ADV

] = wj − wj+1 − pjwj ≥ 0, (10)

where the inequality follows from (3). This end the proof of (5).
Now we turn to (6), the bound on the expected gain of REMIX in a single step.

Obviously,

E[GREMIX] =
n∑

i=1

piwi. (11)

By (4), piwi = wi − wi+1 for all i < n. Also, pn = 1 − ∑
i<n pi , by Fact 3. Making

corresponding substitutions in (11) yields

E[GREMIX] =
(

n−1∑
i=1

(wi − wi+1)

)
+

(
1 −

n−1∑
i=1

pi

)
wn
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= w1 − wn

n−1∑
i=1

pi. (12)

As (4) implies wi = wi−1(1 − pi−1) for all i ≤ n, we can express wn as

wn = w1

n−1∏
i=1

(1 − pi). (13)

Substituting (13) for wn in (12), we obtain

E[GREMIX] = w1

(
1 −

n−1∏
i=1

(1 − pi)

n−1∑
i=1

pi

)
. (14)

Let xi = 1 − pi for 1 ≤ i < n and let xn = ∑n−1
i=1 pi ; note that

∑n
i=1 xi = n − 1.

The inequality between arithmetic and geometric means for x1, . . . , xn yields

n−1∏
i=1

(1 − pi)

n−1∑
i=1

pi =
n∏

i=1

xi ≤
(∑n

i=1 xi

n

)n

=
(

1 − 1

n

)n

. (15)

Plugging (15) into (14) yields

E[GREMIX] ≥ w1

(
1 −

(
1 − 1

n

)n)
, (16)

which proves (6), and together with (5), the theorem. �

3 Application to Similarly Ordered and Other Restricted Instances

We have already mentioned that for s-bounded instances or those with at most s

different packet weights, N ≤ m ≤ s in Theorem 1, which trivially follows from
Fact 2. Thus for either kind of instances REMIX is 1/(1 − (1 − 1

s
)s)-competitive.

In particular, on 2-bounded instances REMIX coincides with the previously known
optimal 4/3-competitive algorithm RAND [4] for the adaptive adversary model.

While in a similarly ordered instance the number of non-dominated pending pack-
ets in any step can be arbitrarily large, surprisingly enough, in every step an oblivious
adversary (wlog) transmits a packet from a set H of at most two packets that can
be identified by the algorithm, assuming (as we did throughout the analysis) that the
same packets are pending for the algorithm and the adversary. Hence, on such in-
stances REMIX is 4/3-competitive against oblivious adversary, provided that H0 is
initialized to H in every step.

This surprising fact follows from Lemma 2, which we state and prove at the end of
this section. As that lemma describes a property of optimum (offline) schedules, it ap-
plies to an oblivious adversary’s schedule only. The end result, i.e., a 4/3-competitive
algorithm was known before [13], as was in fact Lemma 2 itself. The lemma’s and
the analysis technique’s origins and development are surveyed in Sect. 4.
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Before we proceed, we need to inspect some basic properties of schedules. For-
mally, a schedule is an injective function that assigns packets to time steps within
their lifespans. It can thus be thought of as a matching in a bipartite graph whose
partitions are the packets and the steps respectively, and edges connect packets to
the steps in their lifespans. The edges incident to a packet are assigned the packet’s
weight, in a sense making the graph vertex- rather than edge-weighted. Naturally, an
optimal schedule for a set of packets corresponds to a maximum weight matching in
the corresponding graph; for a set of packets X we denote that graph by GX . Struc-
tural properties of optimum schedules and algorithms to find them thus follow from
those of and for matchings.

Firstly, we note a relation between optimum schedules for sets of packets Q and
Q′ such that Q ⊆ Q′. While the lemma seems obvious and its proof is a simple
reasoning about matchings, we prove it for completeness.

Lemma 1 Let Q and Q′ be two sets of packets such that Q ⊆ Q′. Then for every
optimum schedule S for Q there exists an optimum schedule S′ for Q′ such that the
set inclusion S′ ∩ Q ⊆ S holds

Proof Let S and S′′ be any given optimum schedules for Q and Q′ respectively. We
demonstrate how to obtain an optimum schedule S′ for Q′ that satisfies S′ ∩ Q ⊆ S.
To this end view both S and S′′ as matchings in GQ′ and consider their symmetric
difference S ⊕ S′′, which is a disjoint sum of alternating paths and cycles. Unless
there is some packet j ∈ S′′ ∩ Q \ S, we are done by letting S′ = S′′. Note that such
j ∈ S′′ ∩ Q \ S is an endpoint of some alternating path P in S ⊕ S′′. In the following
we will consider augmenting either S or S′′ along P —such operation results in a
matching representing some schedule. Note that all packets in P come from Q, as
they are scheduled in S.

First we prove that P has even length, i.e., it ends in a vertex corresponding to a
packet from Q′. Assume for contradiction that P ’s length is odd, in which case P

ends in a vertex corresponding to a time step t ′ ∈ T , i.e., no packet is assigned to t ′
in S. Then the matching S ⊕ P yields a schedule for Q that satisfies the set inclusion
S ∪ {j} ⊆ S ⊕ P , contradicting optimality of S. See Fig. 1(a) for an illustration.

Hence P has even length and thus ends with a vertex corresponding to a packet
j ′ ∈ S \S′′. Both S and S′′ can be augmented using P , and in terms of packets sched-
uled this operation simply swaps j and j ′. Thus wj = wj ′ follows from optimality of
both S and S′′. Hence S′′ ⊕ P is a matching in GQ′ of the same weight as S′′, i.e., it
is also an optimum schedule for Q′. See Fig. 1(b) for an illustration.

Applying such changes iteratively transforms S′′ to S′ such that S′ ∩ Q ⊆ S. To
observe that a finite number of iterations suffices, define �(X) := |X ∩Q\S| for any
schedule X. It follows that �(S′′ ⊕ P) = �(S′′) − 1. Since � is non-negative and its
value drops by one with each iteration, S′ is obtained in a finite number of steps. �

In our case, Q will be the set of packets pending for REMIX (or ADV, since these
sets are the same in our analysis) at a certain step, with the lifespans of the packets
restricted to that and future steps. A schedule for Q is typically called a provisional
schedule. The set Q′, on the other hand, will be the union of Q with the set of all
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Fig. 1 The alternating path P . Packets are represented by discs, time steps by squares. Dashed lines
represent S′′, solid lines represent S

packets to be released in the future steps of the instance. Then Lemma 1 implies
that (wlog) ADV is going to transmit one of the packets from the optimum provi-
sional schedule. Obviously, there can be arbitrarily many packets in that schedule
but in similarly ordered instances the sets Q and Q′ have additional properties, and
Lemma 1 can be accordingly strengthened.

Lemma 2 Let t be a step, and let Q and Q′ be two sets of packets such that rj = t for
all j ∈ Q, Q ⊆ Q′, t < min{rj | j ∈ Q′ \ Q}, and max{Dj | j ∈ Q} ≤ min{Dj | j ∈
Q′ \ Q}. Also, let S be an EDF-ordered optimal schedule over Q. Then, if S is non-
empty, there exists an optimal schedule S′ over Q′ such that in step t either e or h is
transmitted in S′, where e and h are any earliest-deadline and any maximum-weight
packet from S respectively.

Proof We assume (wlog) that S is EDF-ordered in such a way that S(t) = e. Let X

be an optimal schedule over Q′ that starts in time step t such that X ∩ Q ⊆ S—its
existence is guaranteed by Lemma 1. Moreover, we assume (wlog) that X is EDF-
ordered in such a way that the packets from S ∩ X appear in X in exactly the same
order as in S, and that they are all assigned before those from Q′ ∩ X. If e ∈ X, then
we let S′ = X, and we are done.

Otherwise, observe that since X is optimal, it assigns some packet z ∈ Q to time
step t . If h /∈ X, then we let S′ be X with h substituted for z—such S′ is optimal, as
wh ≥ wz. Otherwise, we claim that S′ can be obtained by reordering X so that h is
assigned to time step t . To prove it, let us enumerate the packets from S in the order
they are assigned: j1, j2, . . . , js . Observe that e = j1, z = jk , and h = jl for some
1 < k < l ≤ s, by our assumptions (k < l, because z is assigned before h in both X

and S). Let di denote the relative deadline of ji at time t , 1 ≤ i ≤ s. Then di ≥ i for
i = 1, . . . , s.

As e = j1 /∈ X and di ≥ i for i = 1, . . . , s, all the packets x ∈ X ∩ S have slack
in X, i.e., they are not tight at the beginning of time steps they are assigned to, and
thus could also be scheduled one step later. Hence we obtain S′ by the following
reordering of X. Firstly, h = jl is assigned to time step t in S′. Then, for every packet
x ∈ X \ {h} in the increasing order of X−1(x), the packet x is assigned to time step
X−1(x) in S′ if this step was yet unassigned and otherwise it is assigned to step
X−1(x) + 1. Note that since we freed the time step X−1(h) in S′ by assigning h
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Fig. 2 Construction of the schedule S′ . Packets from S are represented by circles: the ones included in S′
are filled, the remaining ones are hollow. The packets from S′ \Q are not illustrated, since their assignment
does not change with respect to X

to time step t , for all τ > X−1(h) it holds that S′(τ ) = X(τ). In particular, all the
packets from X are assigned before their deadlines in S′. The reordering is illustrated
in Fig. 2. �

4 Origins and Development of Analysis Technique

As mentioned before, our analysis technique can be traced back to the article that in-
troduced the first optimal deterministic algorithm for similarly ordered instances [16].
The principle of modifying ADV ’s buffer and Lemma 2 both appear there, though
densely interwoven. Furthermore, the core analysis therein relied on obliviousness
of the adversary (i.e., it following an optimal schedule) more than it was necessary:
in what corresponds to Case 2 (df > dz) in our Proof of Theorem 1, Li et al. [16]
first noted that in ADV’s (optimal) schedule f is transmitted later anyway, only then
concluding that ADV may thus be allowed to transmit both z and f .

A later article about similarly ordered instances [13] separated the principle of
the analysis and Lemma 2, though not completely. While the algorithm therein coin-
cides with REMIX with H0 initialized to H = {e,h} (as defined in Lemma 2), in the
analysis the lemma was used only to handle some of the cases (specifically, that of
the algorithm transmitting h �= e and ADV transmitting j �= e), rather than to notice
beforehand that (wlog) ADV transmits either e or h, just like the algorithm.

Subsequently, the technique was applied to analyze two algorithms for the adap-
tive adversary model: RAND, the optimum algorithm for 2-bounded instances, and
RMIX [4]. Comparing the preliminary conference version of [4] to the final one is
illustrative: the original analysis of RAND used a potential function argument, which
resulted in a longer proof with larger number of cases; also, it did not give any anal-
ysis of RMIX, claiming that the original one [6] extends to the adaptive adversary
model.

5 Probability Distribution and Tightness

In this section we prove tightness of our analysis, for all values of the parameter N .
We begin with explaining how the probability distribution used by the algorithm was
chosen; while it does not prove anything on its own, hopefully it is illuminating.
Then we give Packet Scheduling instances that actually prove tightness, and finally
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we note that the algorithm is optimal (in the class of memoryless algorithms) for
the generalized problem of Item Collection. All these have some implications, as we
explain in Sect. 6.

5.1 Probability Distribution Rationale

Recall that the upper bound on the competitive ratio of REMIX is

max1≤z≤m{E[G(z)
ADV]}

E[GREMIX] , (17)

irrespective of the choice of p1, . . . , pm.
The particular probability distribution used in REMIX is chosen to (heuristically)

minimize the above ratio by maximizing E[GREMIX], while keeping (9) satisfied,
which, together with (8), implies E[GADV] ≤ G(1)

ADV = w1.
The first goal can be trivially achieved by setting p1 ← 1 but that would make

E[G(z)
ADV] > w1 for all z > 1. Therefore, some of the probability mass is transferred

to p2,p3, . . . in the following way. To keep E[GREMIX] as large as possible, p2 is
greedily set to its maximum, if there is any unassigned probability left, p3 is set to
its maximum, and so on. As E[G(z)

ADV] does not depend on pi for i ≥ z, the values

E[G(z)
ADV] can be equalized with w1 sequentially, with z increasing, until there is no

unassigned probability left. Equalizing E[G(j)

ADV] with E[G(j−1)

ADV ] consists in setting
pj−1 ← 1 − wj

wj−1
, as shown in (10). The same inequality shows what is intuitively

clear: once there is no probability left and further values E[G(z)
ADV] cannot be equal-

ized, they are only smaller than w1.

5.2 Tightness of Analysis

We present a simple Packet Scheduling instance that proves tightness of our analysis
even in the oblivious adversary model; in fact, all the packets in this instance are
released at once.

Let N be any positive integer and let T � N be another integer. Let h1, h2, . . . , hN

be a sequence of packets such that hi has weight wi = (1 − 1/N)i and absolute
deadline Di = T − i. The instance starts at time 0, when T copies of each of
h1, h2, . . . , hN are released. Note that in each step up to T − N − 1 inclusively,
REMIX will find a chain of N packets: copies of h1, h2, . . . , hN —this is because
it ignores the abundance of copies, whose number is enough so that the algorithm
does not run out of hi ’s copies (1 ≤ i ≤ N ) before they expire. It is easy to observe
that REMIX will assign probability 1/N to a copy of hi for each i in each of these
steps, and that its expected gain in each of these will be (1 − (1 − 1

N
)N) · w1 because

the sequence of weights w1,w2, . . . ,wN (and the resulting sequence of probabilities
p1,p2, . . . , pN ) makes the inequalities (10) and (16) tight. In each of those steps,
ADV transmits a copy of h1, gaining w1 per step. The last N − 1 steps have negligi-
ble impact on both players’ gains, since N � T . Hence, REMIX’s competitive ratio
on these instances is arbitrarily close to 1/(1 − (1 − 1

N
)N).
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As one readily observes, these instances are rather artificial: should the algo-
rithm consider only the packets from the optimum provisional schedule in each step,
it would gain just as much as ADV; such modification of REMIX is justified by
Lemma 1. The same is true for all the variations of this instance we could think of
crafted for the oblivious adversary model, i.e., with packet releases specified upfront.
We don’t know any instance showing the tightness of our analysis of such a varia-
tion of REMIX in the oblivious adversary model. Therefore it is possible that such
a variation of the algorithm attains better competitive ratio, if only in the oblivious
adversary model.

In fact, in the adaptive adversary model our simple instance is easily modified
in such a way that determining the optimum provisional schedule does not affect
REMIX’s behavior. Let us sketch the modification: initially, only a single copy of each
of h1, h2, . . . , hN is released, together with a tight (i.e., expiring at the beginning of
the very next step) packet of weight wN+1 := wN · (1−1/N) = (1−1/N)N+1. Note
that introduction of this packet does not affect REMIX’s probability distribution. In
this step ADV transmits the packet ignored by REMIX. Then, for a number of steps
much larger than N , say T/2, the adversary does the following: it releases a copy of
the packet that REMIX last transmitted, and a single tight packet of weight wN+1. In
each such step ADV transmits the latter packet, whereas REMIX transmits a copy of
one of h1, h2, . . . , hN , chosen uniformly at random. The expected gain of REMIX in
each step is the same as in the previous instance, i.e., (1−(1− 1

N
)N) ·w1. Afterwards,

no further packets are released, and both players can transmit whatever packets are
still pending for them. Again, REMIX’s gain for that is insignificant, since N � T but
in the remaining T/2 steps ADV will transmit all the packets that REMIX transmitted
in previous steps. Hence, one might think that in each of the first T/2 steps ADV gains
wN+1 for transmitting its packet plus the packet that REMIX transmits, as it were in
our amortized analysis. Then ADV’s expected amortized gain in each of those steps
is almost 1: precisely, it is w1 · (1 − (1 − 1

N
)N) + wN+1 = w1 · (1 − (1 − 1

N
)N/N),

which tends to 1 as N grows. Hence, the competitive ratio of REMIX on this instance
also tends to e/(e − 1) as N tends to infinity.

5.3 Optimality for Item Collection

As we mentioned before, REMIX is optimal among randomized memoryless algo-
rithms for Item Collection [3, Theorem 7]. In fact, as noted therein, the lower bound
proof gives an infinite sequence of adversary’s strategies parametrized by N such that
the N -th one forces ratio 1/(1 − (1 − 1

N
)N), while ensuring that the number of pack-

ets pending for the algorithm never exceeds N . In such case REMIX is guaranteed to
match that ratio, hence being the optimal randomized memoryless algorithm for Item
Collection in a strong sense. We note though that, unlike the s-bounded instances of
Packet Scheduling, any class of instances (parametrized by N ) that would contain the
ones defined in the lower bound construction would make little sense on their own:
while at all times the algorithm has at most N packets pending, the lifespans of the
packets are not restricted at all; in fact, the adversary successively “gathers copies”
of the packets pending for the algorithm, only to transmit them all once no further
packets are issued; while the proof is technically more involved, the basic idea in this
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lower bound is similar to the one behind the second instance discussed in Sect. 5.2.
Note that this lower bound gives independent evidence that (17) is indeed minimized
by the heuristic described in Sect. 5.1.

6 Conclusion

Our algorithm REMIX is very simple to analyze, yet it unifies almost all previous ran-
domized algorithms for packet scheduling (the optimum algorithm against oblivious
adversary for 2-bounded instances [6] is the only exception), all the while provid-
ing new bounds for some restricted variants of the problem, thanks to its universal
analysis. However unlikely it seems, it may potentially yield further non-trivial upper
bounds, should one be able to confine the adversary’s choice of packets for transmis-
sion for some class of instances in a similar manner to the one described in Sect. 3
for similarly ordered instances.

As explained in Sect. 5.3, REMIX is an optimal randomized memoryless algorithm
for Item Collection. Therefore, to beat either the general bound of e/(e − 1), or any
of the 1/(1 − (1 − 1

s
)s) bounds for s-bounded instances for Packet Scheduling, one

either needs to consider algorithms that are not memoryless scale-invariant, or better
utilize the knowledge of exact deadlines—in the analysis at least, if not in algorithm
itself.

This might be achieved with the very same algorithm if H0 is always initialized
to (the set of packets included in) the optimum provisional schedule as discussed
in Sect. 5.2. Note that resorting to an optimal provisional schedule takes the deadline
values into account, so the lower bound for Item Collection no longer applies. It is
conceivable that randomized algorithms might benefit from consulting the optimal
provisional schedule, as there are already several algorithms that do so [9, 13, 16,
17]. However, among those the only randomized algorithm is the one for similarly
ordered instances.

Bridging the gaps in any unresolved variant remains an obvious open problem. Let
us point out that settling the question whether one may assume that an adaptive ad-
versary obeys an EDF rule makes for another interesting question. Should the answer
be affirmative, the 4/3 upper bound for similarly ordered instances would apply not
only to the oblivious but also adaptive adversary model, and would be optimal for the
latter.
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