
Unbounded Lower Bound for k-Server against Weak Adversaries
Marcin Bienkowski

marcin.bienkowski@cs.uni.wroc.pl

Institute of Computer Science, University of Wrocław

Poland

Jarosław Byrka

jaroslaw.byrka@cs.uni.wroc.pl

Institute of Computer Science, University of Wrocław

Poland

Christian Coester

christian.coester@cwi.nl

CWI

Netherlands

Łukasz Jeż

lukasz.jez@cs.uni.wroc.pl

Institute of Computer Science, University of Wrocław

Poland

ABSTRACT
We study the resource augmented version of the k-server problem,

also known as the k-server problem against weak adversaries or

the (h,k)-server problem. In this setting, an online algorithm using

k servers is compared to an offline algorithm using h servers, where

h ≤ k . For uniform metrics, it has been known since the seminal

work of Sleator and Tarjan (1985) that for any ϵ > 0, the competitive

ratio drops to a constant if k = (1 + ϵ) · h. This result was later
generalized to weighted stars (Young 1994) and trees of bounded

depth (Bansal et al. 2017). The main open problem for this setting

is whether a similar phenomenon occurs on general metrics.

We resolve this question negatively. With a simple recursive con-

struction, we show that the competitive ratio is at least Ω(log logh),
even as k → ∞. Our lower bound holds for both deterministic and

randomized algorithms. It also disproves the existence of a compet-

itive algorithm for the infinite server problem on general metrics.

CCS CONCEPTS
• Theory of computation→ K-server algorithms.

KEYWORDS
online algorithms, k-server, weak adversaries, resource augmenta-

tion

ACM Reference Format:
Marcin Bienkowski, Jarosław Byrka, Christian Coester, and Łukasz Jeż.

2020. Unbounded Lower Bound for k-Server against Weak Adversaries.

In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing (STOC ’20), June 22–26, 2020, Chicago, IL, USA. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3357713.3384306

1 INTRODUCTION
The k-server problem is one of the most well-studied and influential

online problems in competitive analysis, defined in 1990 by Man-

asse et al. [17]. It generalizes many problems in which an algorithm

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384306

has to maintain a feasible state while satisfying a sequence of re-

quests. Formally, the k-server problem is defined as follows. There

are k servers in a metric space (X,d) and a sequence r1, r2, r3, . . .
of requests to metric space points appears online. In response to

a request ri , an algorithm has to move its servers, so that one of

them ends at point ri . The goal is to minimize the cost defined as

the total distance traveled by all servers.

1.1 From Uniform to General Metrics
The definition of the k-server problem is deceivingly simple, but

it has led to substantial progress in many branches of competitive

analysis. Historically, the results were obtained first for the case

where X is a uniform metric space: the k-server problem is then

equivalent to the paging problem with a cache of size k [20]. In

particular, the competitive ratio for paging is k for deterministic

algorithms and there is a lower bound of k that holds for arbitrary

metric spaces ofmore thank points [17]. This led to the boldk-server
conjecture [17] stating that this ratio is k for all metric spaces. After

series of papers proving the upper bound of k for particular metrics

(e.g., trees or lines), the conjecture has been positively resolved

(in the asymptotic sense) by the celebrated 2k − 1 upper bound

due to Koutsoupias and Papadimitriou [15]. For a more thorough

treatment of the history of deterministic approaches, see a survey

by Koutsoupias [14].

Similarly, randomized competitive solutions for uniform met-

rics [1, 11, 18] showed that the achievable competitive ratio is

exactly Hk = Θ(logk) and led to the analogous randomized k-
server conjecture, stating that the randomized competitive ratio is

Θ(logk) on arbitrary metrics. Some cornerstone results towards

resolving this conjecture deserve closer attention. On the lower

bound side, Bartal et al. [6] used Ramsey-type phenomena for met-

ric spaces to show that the randomized competitive ratio is at least

Ω(logk/log logk) for any metric space.
1
On the algorithmic side,

a major breakthrough (building on a long line of results for partic-

ular metrics) was obtained by Bansal et al. [2], who constructed an

algorithm of ratio poly-logarithmic in the number of metric space

points, based on HST embeddings (hierarchically separated trees)

and the so-called fractional allocation problem. It was recently im-

proved by Bubeck et al. [8], who used mirror descent dynamics

with multi-scale entropic regularization to obtain an O(log2 k)-
competitive algorithm on HSTs and an O(log2 k logn)-competitive

1
In the description of all lower bounds on the competitive ratio for the k -server
problem, we silently assume that the metric space in question has more than k points.

1165

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/351117437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3357713.3384306
https://doi.org/10.1145/3357713.3384306


STOC ’20, June 22–26, 2020, Chicago, IL, USA Marcin Bienkowski, Jarosław Byrka, Christian Coester, and Łukasz Jeż

algorithm on general n-point metrics. Based on this, Lee [16] pro-

posed a dynamic embedding technique to achieve a competitive

ratio poly-logarithmic in k on arbitrary metrics.

1.2 Weak Adversaries
A way to compensate for the online algorithm’s lack of knowledge

of the future is to assume that the algorithm has more “resources”

than the offline optimum it is compared to. This natural concept,

called resource augmentation, has led to spectacular successes for

online scheduling problems (see e.g. [12, 19]). It can be a way to

overcome pessimistic worst-case bounds of the original setting. In

the context of the k-server problem, it is also known as the weak

adversaries model [5, 13] or the (h,k)-server problem: an online

algorithmwithk servers is compared to an optimal algorithm (an ad-

versary) with h ≤ k servers. For a metric space X, let DX(h,k) and
RX(h,k) denote the best competitive ratios of deterministic and

randomized algorithms, respectively, for the (h,k)-server problem
on X.

Again, the first results for the (h,k)-server problem were devel-

oped for uniform metrics: Sleator and Tarjan [20] gave an exact

answer of DX(h,k) = k/(k − h + 1), with the upper bound being

achieved by the LRU (least recently used) paging strategy. This im-

plies that having k = (1 + ϵ) · h servers suffices to attain a constant

competitive ratio. It is natural to ask whether such phenomenon ex-

tends to other metrics. This question was raised already by Manasse

et al [17] when they introduced the k-server problem.

Formally, we study the following questions.

Strong (h,k)-server hypothesis: For any metric space X and

any ϵ > 0, DX(h,k) = Oϵ (1) whenever k ≥ (1 + ϵ) · h.
Weak (h,k)-server hypothesis: For any metric space X and

any h ∈ N, DX(h,k) = O(1) as k → ∞.

Generalizing the result for uniform metrics, the same competi-

tive ratio of k/(k − h + 1) was later also obtained for weighted star

metrics [22]. More recently, Bansal et al. [4] confirmed the strong

(h,k)-server hypothesis also for trees of bounded depth. Using ran-

domization, tight bounds of RX(h,k) = Θ(log(1/ϵ)) were obtained
for uniform metrics [21] and weighted stars [3] when k = (1+ϵ) ·h.
The recent results by Bubeck et al. [8] and Buchbinder et al. [9]

for the k-server problem extend also to the (h,k)-server setting,
implying that RX(h,k) = O(D · log(1/ϵ)) for HSTs of depthD when

k = (1 + ϵ) · h.2

Surprisingly, the performance of some classical algorithms can

slightly degradewhen additional online servers are available. Bansal

et al. [4, 5] showed that this can occur for both the Work Function

algorithm and the Double Coverage algorithm. On the positive

side, Koutsoupias [13] showed that the Work Function algorithm

obtains a competitive ratio of at most 2h simultaneously for all

h ≤ k . The algorithm of [4] confirming the (h,k)-server hypothesis
on bounded depth trees is actually a variant of the Double Coverage

algorithm.

In [10], the infinite server problem (denoted∞-server problem

here) has been introduced as a possible way to resolve the question

on general metrics. This is the variant of thek-server problemwhere

k = ∞, and all infinitely many servers initially reside at the same

2
For general trees of depth D , they obtain a fractional algorithm achieving the same

competitive ratio.

point of the metric space. The existence of an O(1)-competitive

algorithm for the ∞-server problem was shown to be equivalent to

an affirmative resolution of the weak (h,k)-server hypothesis.
In terms of lower bounds, it is known that — unlike in the case

of uniform and weighted star metrics — the ratio DX(h,k) does
not converge to 1 on general metrics even as k → ∞. Namely,

Bar-Noy and Schieber [7, page 175] showed that DX(2,k) = 2 for

all k when X is the line metric. For large h, the lower bound on

DX(h,k) was improved to 2.41 [4] using depth-2 trees and later to

3.14 [10] by a reduction from the∞-server problem. In the absence

of any super-constant lower bounds, the (h,k)-server hypothesis
continued to seem plausible. In fact, Bansal et al. [4] argued that it

would be very surprising if DX(h,k) = ω(1) (even for a sufficiently

large k).

1.3 Our Results
Our main result is the refutation of both versions of the (h,k)-server
hypothesis:

Theorem 1. There exists a tree metric T such that RT (h,k) =
Ω(log logh), even for arbitrarily large k .

Since DT (h,k) ≥ RT (h,k), the lower bound obviously extends

to deterministic algorithms. The underlying construction is simple.

It is based on recursively combining Young’s lower bound for ran-

domized (h,k)-paging [21] along many scales. At higher scales, the

construction is applied to groups of servers rather than individual

servers.

Due to the connection between the (h,k)-server problem and

the∞-server problem [10], a direct consequence of Theorem 1 is

that there is no competitive algorithm for the∞-server problem on

general metrics. In fact, we first found the lower bound by analyzing

the ∞-server problem.

Corollary 2. The competitive ratio of the∞-server problem on

trees of depth D is Ω(logD). In particular, no algorithm for the ∞-

server problem on general metrics has a constant competitive ratio.

1.4 Preliminaries
An online algorithm Alg is called ρ-competitive if

Alg(σ ) ≤ ρ · Opt(σ ) +C

for all request sequences σ , where Alg(σ ) and Opt(σ ) denote the
cost of Alg and the optimal (offline) cost for σ , respectively, and
C ≥ 0 is a constant independent of σ . The competitive ratio of

a problem is the infimum of all ρ such that a ρ-competitive al-

gorithm exists. In the case of randomized algorithms, Alg(σ ) is
replaced by its expectation. Note that for the (h,k)-server problem,

Opt denotes the optimal solution using h servers, while Alg uses

k servers.

An algorithm is fractional if it is allowed to move an arbitrary

fraction of a server, paying the same fractions of the distance moved,

but it is still required to bring “a total mass” of at least one server

to the requested point. A fractional algorithm can be derived from

a randomized one by setting the server mass at each point to the

1166



Unbounded Lower Bound for k-Server against Weak Adversaries STOC ’20, June 22–26, 2020, Chicago, IL, USA

expected number of servers; clearly, the cost of the fractional algo-

rithm is at most the expected cost of the randomized algorithm.
3

All metric spaces constructed in this paper are trees with a dis-

tinguished root, and we assume that servers reside initially at the

root. We will charge cost (to both the online and offline algorithms)

only for traversing edges in direction away from the root. Since

movement away from the root is within a factor 2 of the total move-

ment, the error due to this is absorbed in the asymptotic notation

of our results.

For an infinite request sequence σ , we denote its prefix of the

firstm requests by σm .

2 PROOF OF THE LOWER BOUND
Below we state the main lemma towards proving Theorem 1.

Lemma 3. Fix arbitrary ρ ≥ 1, δ > 0 and an integer i ≥ 0. Let

b = ⌈exp(3ρ)⌉, hi = bi , ki = bi · (1 + i/(2b)). There exists a tree Ti
of depth i such that, for any fractional online ki -server algorithm
Alg, there exists an infinite request sequence σ on Ti satisfying two
properties:

(a) Alg(σm ) ≥ ρ ·Opthi (σm )−δ for allm ∈ N, whereOpthi (σm )

denotes the optimal cost for serving σm using hi servers.
(b) If i ≥ 1, then Alg(σm ) → ∞ asm → ∞.

Proof. We prove the lemma by induction on i . For i = 0, the

tree T0 is simply a single node, and all requests are given at this

node. Clearly, the lemma holds here.

For the inductive step, we fix any i ≥ 0. We will show that the

lemma properties for i + 1 hold for some δ . By scaling all distances

by a small multiplicative constant, this implies that δ can be made

arbitrarily close to 0, yielding the lemma statement for i + 1 and
arbitrary δ .

Let Ti be the tree induced by the induction hypothesis for δ =
1/2. The root of Ti+1 has infinitely many children at distance 1;

all the subtrees rooted at these children are copies of Ti . We will

assume that the server mass in each subtree never exceeds ki ;
this assumption will be justified later. It allows us to invoke the

induction hypothesis on the subtrees. If the mass inside a subtree

is ki − c for some c ≥ 0, we interpret this as mass c sitting at the

root of the subtrees. Note that the sub-algorithms for the different

subtrees are not independent of each other, as a request in one

subtree can trigger movement towards the root in another subtree.

However, we construct the request sequence in an online manner

where each request is independent of decisions of the algorithm

for future requests, and thus we can analyze the sub-algorithms

independently of each other.

Let ϵ > 0 be some small constant. The request sequence σ con-

sists of phases numbered from 1. In each phase, b subtrees Ti will
be marked and among them b − 1 subtrees were marked in the

previous phase. For this definition, we assume that right before

phase 1, in an artificial phase 0 containing no requests, b arbitrary

subtrees were marked. All phases proceed as follows:

• Mark a fresh subtreeTi that has never received any requests

before.

3
Onweighted stars and HSTmetrics, the converse is also true: Any fractional algorithm

can be rounded online to a randomized integral one while increasing its cost by at

most a multiplicative constant [2, 3]. It is unknown whether this also holds for general

metrics.

• While the server mass in the fresh subtree is at most ki − ϵ ,
issue requests in it according to the induction hypothesis.

• For j = 1, . . . ,b − 1:

– Among the subtrees that were marked in the last phase

but have not been marked (yet) in the current phase, mark

the one with the least server mass.

– While there exists a subtree marked in the current phase

where the server mass is at most ki − ϵ , issue requests in
this subtree according to the induction hypothesis.

The request sequence satisfies Property (b): if i = 0, then each

request incurs at least cost ϵ , and if i ≥ 1 this follows by the

induction hypothesis. We now prove that Property (a) also holds.

We compare Alg against an offline algorithm Adv with hi+1 =
bi+1 servers that always has hi = b

i
servers at each marked subtree

of the current phase, and uses servers optimally within the subtrees.

Consider some phase. Denote by Algℓ and Alg≤ℓ the cost of

Alg incurred during the phase along edges of level ℓ and along

edges of level at most ℓ, respectively. We define Advℓ and Adv≤ℓ

analogously. Here, we use the convention that edges incident to the

leaves have level 1 and edges incident to the root have level i + 1.
Consider the case that the phase under consideration is complete.

We analyze first the cost along edges incident to the root. Alg pays

at least ki −ϵ to move server mass ki −ϵ to the fresh subtree. At the

beginning of iteration j of the for-loop, Alg has server mass at least

ki −ϵ in each of the j subtrees that were marked during the current

phase. Note that j − 1 of them were marked in the previous phase.

Thus, the average amount of server mass in the b − (j − 1) subtrees

that were marked in the last phase but not yet in the current phase

is at most (ki+1 − j · (ki − ϵ))/(b − j + 1). In effect, the cost to move

mass to the subtree that is marked in the jth iteration is at least

ki − ϵ −
ki+1 − j · (ki − ϵ)

b − j + 1
=

(ki − ϵ)(b + 1) − ki+1
b − j + 1

.

Hence, as ϵ → 0, the total cost of moving server mass to the marked

subtrees of the phase is at least

Algi+1 ≥ ki − o(1) +
b−1∑
j=1

ki (b + 1) − ki+1
b − j + 1

= bi ·
©«1 +

i

2b
+

b−1∑
j=1

(
1 + i

2b

)
(b + 1) − b

(
1 + i+1

2b

)
b − j + 1

ª®®¬ − o(1)

= bi ·
©«12 +

(
1

2

+
i

2b

)
+

b−1∑
j=1

1

2
+ i

2b
b − j + 1

ª®¬ − o(1)

≥ bi ·

(
1

2

+
lnb

3

)
≥ biρ + bi/2.

In contrast, the offline cost during the phase along edges incident

to the root is only

Advi+1 = b
i

because the offline algorithmmoves onlybi servers from the subtree

that was marked in the last but not in the current phase to the fresh

subtree of the current phase.

1167



STOC ’20, June 22–26, 2020, Chicago, IL, USA Marcin Bienkowski, Jarosław Byrka, Christian Coester, and Łukasz Jeż

For the cost within the subtrees, the induction hypothesis of (a)

(applied to b marked subtrees with δ = 1/2) yields

Alg≤i ≥ ρ · Adv≤i − b/2.

Therefore, for the total cost during a complete phase, we obtain

Alg≤i+1 = Algi+1 + Alg≤i

≥ ρ · Advi+1 + b
i/2 + ρ · Adv≤i − b/2

≥ ρ · Adv≤i+1.

In the last phase, which may be incomplete, we have

Alg≤i+1 ≥ Alg≤i

≥ ρ · Adv≤i − b/2

≥ ρ · Adv≤i+1 − ρbi − b/2.

Now if we set δ ′ to be ρbi + b/2 plus the cost of Adv to bring

servers to the marked subtrees of phase 0, then we obtain Property

(a) for i + 1 and a fixed δ ′. Recall that this yields the same property

for arbitrary δ ′ by scaling all distances by a small factor.

Finally, it remains to justify the assumption that the server mass

in each subtree Ti never exceeds ki , which was necessary to allow

invoking the induction hypothesis. Suppose after serving a request

to a leaf u, the algorithm ends up with server mass ki + c in the

subtree that contains u, for some c > 0. Call this subtree S . Without

loss of generality, the distance from the root of S to any leaf in S is

at most 1 (we can scale all subtrees Ti down to achieve this). Upon

serving the request at leaf u, at least mass c + ϵ traveled to leaf u
across the root r of Ti+1. Consider an alternative algorithm Alg

′

that stores an amount c of this mass at r and brings mass c from
another vertex in S to leaf u instead. Upon serving this request,

Alg
′
saves cost c compared to Alg, since it does not need to bring

this mass from r to the root of S . The next time that Alg would

take mass from S to another subtree Ti , we first take it from the

mass c that is stored at the root of Ti+1. Notice that there will be
no request in S until after the stored mass c at r has been used up.

Once it has been used up, Alg
′
reorganizes its server mass so that

its configuration is the same as that of Alg again. This requires at

most cost c for moving this much mass within S , which is the cost

that Alg
′
had saved before. Thus, we have a new algorithm whose

cost is less than that of Alg, which never exceeds mass ki in any

subtree (by repeating this idea), and for which our lower bound

holds. □

We obtain the main result by combining the trees guaranteed by

Lemma 3.

Proof of Theorem 1. For i ∈ N, let bi = ⌊
√
i⌋ and ρi =

1

3
lnbi .

The lower bound holds on the following tree T : It contains as

subtrees, for each i ∈ N, infinitely many copies of the tree Ti
guaranteed by Lemma 3 for ρ = ρi and δ = bii . The roots of the
subtrees Ti are connected to the root of T by edges of length 1.

Let h ≤ k be the numbers of offline and online servers respec-

tively. Let ih = ⌊
√
lnh⌋. The adversarial sequence uses only subtrees

of type Tih . It consists of epochs: In each epoch, select a subtree of

type Tih whose online server mass is zero. Requests are issued in

this subtree as induced by Lemma 3. As soon as the online server

mass in the subtree exceeds b
ih
ih

· (1 + ih/(2bih )), the epoch ends

and a new epoch begins.

At the start of each epoch, the offline algorithm brings b
ih
ih

≤

ih
ih/2 ≤ exp(i2h ) ≤ h servers to the subtree of that epoch. For

a given epoch, denote by Alg and Adv, respectively, the online

and offline cost suffered within the active subtree of the epoch. By

Lemma 3,

Alg ≥ ρih · Adv − b
ih
ih
.

If the epoch runs indefinitely (because the algorithm never brings

the required number of servers to the subtree), then the cost within

the active subtree dominates the competitive ratio. Since ρih =
Ω(logbih ) = Ω(log ih ) = Ω(log logh), the theorem follows.

Otherwise, the online algorithm pays at leastb
ih
ih
·(1+ih/(2bih )) to

bring as many servers to the subtree, whereas the offline algorithm

pays only b
ih
ih

to move servers to the subtree. Thus, the ratio of the

total online to offline cost during each epoch is at least

ρih · Adv + b
ih
ih

·
ih
2bih

Adv + b
ih
ih

≥ min

{
ρih ,

ih
2bih

}
= Ω(log ih )

= Ω(log logh). □

The theorem holds also if instead of a single infinite tree T , there

is a finite tree Tk for each k . The trees only need to be large enough
so that, whenever we want to choose an empty subtree, we can

instead find a subtree with negligibly small server mass.

Proof of Corollary 2. Consider the same tree as in the proof

of Theorem 1, except that it contains the subtrees Ti for only one

value of i = ih . By the identical arguments as in the proof of

Theorem 1, we obtain a lower bound of Ω(log ih ) for trees of depth
ih + 1. If the subtrees Ti are included for all i , we obtain a metric

space with no competitive algorithm for the∞-server problem. □

3 CONCLUSIONS
We have refuted the (h,k)-server hypothesis by proving that, on

trees of sufficient depth, RT (h,k) = Ω(log logh) even when k is

arbitrarily large. When expressed in terms of the depth D of the

tree, the lower bound amounts to Ω(logD) and applies also to the

∞-server problem.

The construction of our lower bound is inherently fractional: On

higher scales, even if an algorithm is deterministic, it can move only

a fraction of a group of servers. It would be interesting to show

a lower bound for deterministic algorithms that is substantially

larger than the randomized one.

Intriguing gaps remain between the lower and upper bounds.

The upper bound that would follow from the randomized k-server
conjecture when disabling the k −h extra servers,O(logh), is expo-
nentially larger than our lower bound. For deterministic algorithms,

the gap is even doubly exponential.

ACKNOWLEDGMENTS
Supported by Polish National Science Centre grants

2015/18/E/ST6/00456, 2016/22/E/ST6/00499, 2016/21/D/ST6/02402,

and the NWO VICI grant 639.023.812.

1168



Unbounded Lower Bound for k-Server against Weak Adversaries STOC ’20, June 22–26, 2020, Chicago, IL, USA

REFERENCES
[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis

of randomized paging algorithms. Theoretical Computer Science 234, 1–2 (2000),

203–218. https://doi.org/10.1016/S0304-3975(98)00116-9

[2] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. 2015. A

Polylogarithmic-Competitive Algorithm for the k-Server Problem. J. ACM 62, 5

(2015), 40:1–40:49. https://doi.org/10.1145/2783434

[3] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. 2012. A Primal-Dual Randomized

Algorithm for Weighted Paging. J. ACM 59, 4 (2012), 19:1–19:24. https://doi.org/

10.1145/2339123.2339126

[4] Nikhil Bansal, Marek Eliáš, Lukasz Jez, and Grigorios Koumoutsos. 2019. The (h,

k)-Server Problem on Bounded Depth Trees. ACM Transactions on Algorithms 15,

2 (2019), 28:1–28:26. https://doi.org/10.1145/3301314

[5] Nikhil Bansal, Marek Eliáš, Lukasz Jez, Grigorios Koumoutsos, and Kirk Pruhs.

2018. Tight Bounds for Double Coverage Against Weak Adversaries. Theory of

Computing Systems 62, 2 (2018), 349–365. https://doi.org/10.1007/s00224-016-

9703-3

[6] Yair Bartal, Béla Bollobás, and Manor Mendel. 2006. Ramsey-type theorems for

metric spaces with applications to online problems. J. Comput. System Sci. 72, 5

(2006), 890–921. https://doi.org/10.1016/j.jcss.2005.05.008

[7] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive

Analysis. Cambridge University Press.

[8] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander

Madry. 2018. k-server via multiscale entropic regularization. In Proc. 50th ACM

Symp. on Theory of Computing (STOC). 3–16. https://doi.org/10.1145/3188745.

3188798

[9] Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. 2019.

k-Servers with a Smile: Online Algorithms via Projections. In Proc. 30th ACM-

SIAM Symp. on Discrete Algorithms (SODA). 98–116. https://doi.org/10.1137/1.

9781611975482.7

[10] Christian Coester, Elias Koutsoupias, and Philip Lazos. 2017. The Infinite Server

Problem. In Proc. 44th Int. Colloq. on Automata, Languages and Programming

(ICALP). 14:1–14:14. https://doi.org/10.4230/LIPIcs.ICALP.2017.14

[11] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,

and Neal E. Young. 1991. Competitive paging algorithms. Journal of Algorithms

12, 4 (1991), 685–699. https://doi.org/10.1016/0196-6774(91)90041-V

[12] Bala Kalyanasundaram and Kirk Pruhs. 2000. Speed is as powerful as clairvoyance.

J. ACM 47, 4 (2000), 617–643. https://doi.org/10.1145/347476.347479

[13] Elias Koutsoupias. 1999. Weak Adversaries for the k-Server Problem. In Proc.

40th IEEE Symp. on Foundations of Computer Science (FOCS). 444–449. https:

//doi.org/10.1109/SFFCS.1999.814616

[14] Elias Koutsoupias. 2009. The k-server problem. Computer Science Review 3, 2

(2009), 105–118. https://doi.org/10.1016/j.cosrev.2009.04.002

[15] Elias Koutsoupias and Christos H. Papadimitriou. 1995. On the k-Server Conjec-

ture. J. ACM 42, 5 (1995), 971–983. https://doi.org/10.1145/210118.210128

[16] James R. Lee. 2018. Fusible HSTs and the Randomized k-Server Conjecture.

In Proc. 59th IEEE Symp. on Foundations of Computer Science (FOCS). 438–449.

https://doi.org/10.1109/FOCS.2018.00049

[17] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. 1990. Competitive

algorithms for server problems. Journal of Algorithms 11, 2 (1990), 208–230.

https://doi.org/10.1016/0196-6774(90)90003-W

[18] Lyle A.McGeoch andDaniel D. Sleator. 1991. A Strongly Competitive Randomized

Paging Algorithm. Algorithmica 6, 6 (1991), 816–825. https://doi.org/10.1007/

BF01759073

[19] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. 2002. Optimal

Time-Critical Scheduling via Resource Augmentation. Algorithmica 32, 2 (2002),

163–200. https://doi.org/10.1007/s00453-001-0068-9

[20] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update

and paging rules. Commun. ACM 28, 2 (1985), 202–208. https://doi.org/10.1145/

2786.2793

[21] Neal E. Young. 1991. On-line caching as cache size varies. In Proc. 2nd ACM-SIAM

Symp. on Discrete Algorithms (SODA). 241–250.

[22] Neal E. Young. 1994. The k-Server Dual and Loose Competitiveness for Paging.

Algorithmica 11, 6 (1994), 525–541. https://doi.org/10.1007/BF01189992

1169

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/2783434
https://doi.org/10.1145/2339123.2339126
https://doi.org/10.1145/2339123.2339126
https://doi.org/10.1145/3301314
https://doi.org/10.1007/s00224-016-9703-3
https://doi.org/10.1007/s00224-016-9703-3
https://doi.org/10.1016/j.jcss.2005.05.008
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/1.9781611975482.7
https://doi.org/10.1137/1.9781611975482.7
https://doi.org/10.4230/LIPIcs.ICALP.2017.14
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1145/347476.347479
https://doi.org/10.1109/SFFCS.1999.814616
https://doi.org/10.1109/SFFCS.1999.814616
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1145/210118.210128
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1007/BF01759073
https://doi.org/10.1007/BF01759073
https://doi.org/10.1007/s00453-001-0068-9
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/2786.2793
https://doi.org/10.1007/BF01189992

	Abstract
	1 Introduction
	1.1 From Uniform to General Metrics
	1.2 Weak Adversaries
	1.3 Our Results
	1.4 Preliminaries

	2 Proof of the lower bound
	3 Conclusions
	Acknowledgments
	References

