58 research outputs found

    Differential inflammatory microRNA and cytokine expression in pulmonary sarcoidosis

    Get PDF
    Sarcoidosis is a granulomatous disease of unknown etiology. The disease has an important inflammatory and immune component; however, its immunopathogenesis is not completely understood. Recently, the role of microRNAs (miRNAs), the small non-coding RNAs, has attracted attention as both being involved in pathogenesis and serving as disease markers. Accordingly, changes in the expression of some miRNAs have been also associated with different autoimmune pathologies. However, not much is known about the role of miRNAs in sarcoidosis. Therefore, the aim of this study was to compare the level of expression of selected miRNAs in healthy individuals and patients with sarcoidosis. We detected significantly increased level of miR-34a in peripheral blood mononuclear cells isolated from sarcoidosis patients. Moreover, significantly up-regulated levels of interferon (IFN)-Ξ³, IFN-Ξ³ inducible protein (IP-10) and vascular endothelial growth factor were detected in sera of patients when compared to healthy subjects. Our results add to a known inflammatory component in sarcoidosis. Changes in the levels of miR-34a may suggest its involvement in the pathology of this disease

    Modulation of Experimental Herpes Encephalitis-Associated Neurotoxicity through Sulforaphane Treatment

    Get PDF
    Reactive oxygen species (ROS) produced by brain-infiltrating macrophages and neutrophils, as well as resident microglia, are pivotal to pathogen clearance during viral brain infection. However, unchecked free radical generation is also responsible for damage to and cytotoxicity of critical host tissue bystander to primary infection. These unwanted effects of excessive ROS are combated by local cellular production of antioxidant enzymes, including heme oxygenase-1 (HO-1) and glutathione peroxidase 1 (Gpx1). In this study, we showed that experimental murine herpes encephalitis triggered robust ROS production, as well as an opposing upregulation of the antioxidants HO-1 and Gpx1. This antioxidant response was insufficient to prevent tissue damage, neurotoxicity, and mortality associated with viral brain infection. Previous studies corroborate our data supporting astrocytes as the major antioxidant producer in brain cell cultures exposed to HSV-1 stimulated microglia. We hypothesized that stimulating opposing antioxidative responses in astrocytes, as well as neurons, would mitigate the effects of ROS-mediated neurotoxicity both in vitro and during viral brain infection in vivo. Here, we demonstrate that the addition of sulforaphane, a potent stimulator of antioxidant responses, enhanced HO-1 and Gpx1 expression in astrocytes through the activation of nuclear factor-E2-related factor 2 (Nrf2). Additionally, sulforaphane treatment was found to be effective in reducing neurotoxicity associated with HSV-stimulated microglial ROS production. Finally, intraperitoneal injections of sulforaphane into mice during active HSV infection reduced neuroinflammation via a decrease in brain-infiltrating leukocytes, macrophage- and neutrophil-produced ROS, and MHCII-positive, activated microglia. These data support a key role for astrocyte-produced antioxidants in modulating oxidative stress and neuronal damage in response to viral infection

    Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11Ξ²-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

    Get PDF
    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11Ξ²-hydroxysteroid dehydrogenase-1 (11Ξ²-HSD1).; Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11Ξ²-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11Ξ²-HSD1 expressing cells with cortisone, an effect that was reversed by 11Ξ²-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11Ξ²-HSD1 and Nrf2 target gene expression.; The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11Ξ²-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11Ξ²-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11Ξ²-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo

    Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer

    Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription

    Get PDF
    The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet Ξ²-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF
    • …
    corecore