60 research outputs found

    The splice is not right: splice-site-creating mutations in cancer genomes

    Get PDF
    Accurate interpretation of cancer mutations in individual tumors is a prerequisite for precision medicine. Large-scale sequencing studies, such as The Cancer Genome Atlas (TCGA) project, have worked to address the functional consequences of genomic mutations, with the larger goal of determining the underlying mechanisms of cancer initiation and progression. Many studies have focused on characterizing non-synonymous somatic mutations that alter amino acid sequence, as well as splice disrupting mutations at splice donors and acceptors. Current annotation methods typically classify mutations as disruptors of splicing if they fall on the consensus intronic dinucleotide splice donor, GT, the splice acceptor, AG. Splice site mutations as a group have been presumed to be invariably deleterious because of their disruption of the conserved sequences that are used to identify exon-intron boundaries. While this classification method has been useful, increasing evidence suggests that splice site mutations can lead to transcriptional changes beyond disruption and that many exonic mutations that act primarily through alternative splicing are still being overlooked in cancer genomics. My thesis work focuses on developing tools to systematically classify and functionally validate splice site and splice creating mutations using RNA-Seq data, to more accurately understand the functional consequences of mutations on alternative splicing by integrating DNA and RNA-Sequencing data. First we developed SpliceInator, a semi-automated tool to systematically detect splicing phenotypes using mutation and gene expression data. We interrogated 1,146 conserved splice site mutations across 19 cancer types revealing a wide range of complex splicing phenotypes and emphasize the importance of analyzing patient specific RNA-Sequencing. We further explored beyond the splice site by interogating all mutations in a splicing context using MiSplice for the first large-scale discovery of splice-creating mutations (SCMs) across 8,656 TCGA tumors. We reported 1,964 originally mis-annotated mutations having clear evidence of creating novel splice junctions. Mutations in a subset of genes including PARP1, BRCA1, and BAP1, were experimentally validated for splice-creating function using a mini-gene splicing assay. Notably, we found neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Our work highlights importance of integrating DNA and RNA data for understanding functional and clinical implications of mutations in human diseases. Finally, to further capture the full landscape of SCMs, we explored both somatic and germline mutations for splice-site-creating function using MiSplice. Altogether, we have gathered a set of 2,888 SCMs enabling us to effectively compare the landscape of rare and germline SCMs. This compendium of SCMs has also started to elucidate novel genomic properties of mutations located at the donor and acceptor splice site and SCM containing exons including an overall decrease in the size of the novel exon post mutation, mimicking a natural evolutionary selective pressure but exploited in the cancer genome to maintain proper alternative splicing. To date, this is the first analysis comparing rare germline SCMs and somatic SCMs revealing their comparable dysregulation to the splicing code in cancer. Together my thesis work revealed that splice-site-creating mutants play a much larger role than previously appreciated in contributing to cancer and further expands our understanding of the genetic basis by which mutations can alter the mRNA landscape by dysregulating alternative splicing. More broadly, my work calls for a deeper analysis of seemingly “silent” mutations in any disease as such mutations may alter gene function via alternative splicing and integrating RNA and DNA-Seq can allow for accurate evaluation of mutations in a splicing context

    Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma

    Get PDF
    Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM\u27s progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD13

    Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis

    Get PDF
    UNLABELLED: As part of the Multiple Myeloma Research Foundation (MMRF) immune atlas pilot project, we compared immune cells of multiple myeloma bone marrow samples from 18 patients assessed by single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to understand the concordance of measurements among single-cell techniques. Cell type abundances are relatively consistent across the three approaches, while variations are observed in T cells, macrophages, and monocytes. Concordance and correlation analysis of cell type marker gene expression across different modalities highlighted the importance of choosing cell type marker genes best suited to particular modalities. By integrating data from these three assays, we found International Staging System stage 3 patients exhibited decreased CD4 SIGNIFICANCE: scRNA-seq, CyTOF, and CITE-seq are increasingly used for evaluating cellular heterogeneity. Understanding their concordances is of great interest. To date, this study is the most comprehensive examination of the measurement of the immune microenvironment in multiple myeloma using the three techniques. Moreover, we identified markers predicted to be significantly associated with multiple myeloma rapid progression

    Motixafortide and G-CSF to mobilize hematopoietic stem cells for autologous transplantation in multiple myeloma: A randomized phase 3 trial

    Get PDF
    Autologous hematopoietic stem cell transplantation (ASCT) improves survival in multiple myeloma (MM). However, many individuals are unable to collect optimal CD3

    LINC00355 regulates p27 KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer

    Get PDF
    Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of 72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7 long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p2

    Divergent viral presentation among human tumors and adjacent normal tissues

    Get PDF
    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets

    CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic

    Get PDF
    CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer

    CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells

    Get PDF
    Despite improvement in treatment options for myeloma patients, including targeted immunotherapies, multiple myeloma remains a mostly incurable malignancy. High CS1 (SLAMF7) expression on myeloma cells and limited expression on normal cells makes it a promising target for CAR-T therapy. The CS1 protein has two extracellular domains - the distal Variable (V) domain and the proximal Constant 2 (C2) domain. We generated and tested CS1-CAR-T targeting the V domain of CS1 (Luc90-CS1-CAR-T) and demonstrated anti-myeloma killing in vitro and in vivo using two mouse models. Since fratricide of CD8 + cells occurred during production, we generated fratricide resistant CS1 deficient Luc90- CS1- CAR-T (ΔCS1-Luc90- CS1- CAR-T). This led to protection of CD8 + cells in the CAR-T cultures, but had no impact on efficacy. Our data demonstrate targeting the distal V domain of CS1 could be an effective CAR-T treatment for myeloma patients and deletion of CS1 in clinical production did not provide an added benefit using in vivo immunodeficient NSG preclinical models
    • …
    corecore