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ARTICLE OPEN

LINC00355 regulates p27KIP expression by binding to
MENIN to induce proliferation in late-stage relapse
breast cancer
Abdallah M. Eteleeb1, Prasanth K. Thunuguntla1, Kyla Z. Gelev 1, Cynthia Y. Tang 2, Emily B. Rozycki1, Alexander Miller1,
Jonathan T. Lei 3, Reyka G. Jayasinghe1,4, Ha X. Dang 1,4,5, Nicole M. White1,5, Jorge S. Reis-Filho 6, Elaine R. Mardis7,
Matthew J. Ellis3, Li Ding1,4,5, Jessica M. Silva-Fisher 1,5,9✉ and Christopher A. Maher 1,4,5,8,9✉

Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and
has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been
studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of
72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7
long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that
LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p27Kip. In summary, this is a key study
discovering lncRNAs in LSR BC and LINC00355 association with epigenetic regulation and proliferation in BC.

npj Breast Cancer            (2022) 8:49 ; https://doi.org/10.1038/s41523-022-00412-2

INTRODUCTION
Breast cancer is the most common cancer diagnosed among US
women with ~276,480 estimated new cancer cases in 2020 and is
the second leading cause of cancer deaths among women1. The
5-year relative survival for localized disease is above 98%.
However, this decreases significantly to 28% for distant metas-
tasis2. Breast cancer relapse occurs within the first 3–5 years after
initial treatment; however, those that relapse after five years are
termed late-stage relapse (LSR) breast cancer3. Trials of patients
treated with adjuvant endocrine therapy for five years have shown
a 50% reduction in the risk of relapsing, but the risk of relapse is
10% and as high as 41% depending on initial tumor node status
and tumor grade4–6. Additionally, there are limited treatment
options for patients with LSR breast cancer and few of these
patients cannot undergo chemotherapy owing to organ dysfunc-
tion or lower performance status as a result of widespread
metastasis7. Overall, more studies are needed to understand the
benefits of long-term hormone therapy and the underlying
molecular and genetic mechanisms promoting LSR.
Long non-coding RNAs (lncRNAs) are greater than 200

nucleotides in length, do not encode proteins8, and have a
diverse range of epigenetic and biological functions, including
serving in many functions associated with carcinogenesis and
metastasis9–14. LncRNAs have been found to be deregulated in
breast cancer15–22 and have been associated with drug resis-
tance23–25. Since lncRNAs serve as potential biomarkers due to
their strong tissue specificity26,27, we hypothesize that they can
also be used as biomarkers for LSR. Subsequent mechanistic
studies could improve our understanding of why some patients
relapse more than five years after treatment. However, despite
multiple studies identifying the roles of lncRNAs in the distant

metastasis of breast cancer23,28–31, the contribution of lncRNAs to
LSR breast cancer has not been explored. This is primarily due to
limited availability of LSR patient cohorts for molecular character-
ization. To overcome this barrier, we utilized ER+ early-stage II
and III tumor samples accrued from two neoadjuvant aromatase
inhibitor treatment trials32,33 and LSR patient tumor samples from
Washington University34. Using transcriptome sequencing, we
compared the LSR samples to early-stage samples to identify
deregulated lncRNAs associated with relapse. We identified
LINC00355 to be the most up-regulated lncRNA in LSR breast
cancer patient samples and cancer cell lines. Next, we determined
that LINC00355 promoted cellular proliferation by binding to the
MENIN protein to decrease the expression of cyclin-dependent
kinase inhibitor, p27Kip. This study provides the landscape of
lncRNAs in LSR and mechanistic evidence of LINC00355 contribu-
tion in LSR breast cancer and proliferation.

RESULTS
Identification of long non-coding RNAs in late-stage relapse
breast cancer
In order to identify which lncRNAs are associated with LSR, we
analyzed transcriptome sequencing data from 72 early-stage
patient samples from two preoperative neoadjuvant aromatase
inhibitor treatment trials (ACOSOG-Z1031/NCT00265759 and
NCT00084396)32,33, termed “early-stage” and 24 LSR patient
samples sequenced at Washington University34, termed “late-
stage” (Supp. Table 1). Our analysis revealed 1,127 differentially
expressed (DE) lncRNAs (FDR < 0.001, absolute log2FC > 2, Supp.
Table 2) between the early-stage and late-stage relapse breast
cancer patient samples (Fig. 1a, Supp. Fig. 1).
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Additionally, due to the complex subtypes in breast cancer, we
also evaluated the expression of the DE lncRNAs associated with
LSR breast cancer in a panel of publicly available RNA sequence
data from 31 nonmalignant and malignant ER+ breast cancer cell
lines35. We were able to identify 68 deregulated lncRNAs
associated with LSR and highly expressed in cell lines with

Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) > 5 in at least two breast cancer cell lines (Fig. 1a, b, and
Supp. Fig. 2). We identified several known lncRNAs previously
identified to promote breast cancer including LINC0258236,
CASC937–39, PDXDC2P40, NNT-AS141, AP000439.342, and lncRNAs
found to be expressed in other cancer types (Fig. 1b). Next, we

Fig. 1 Identification of long non-coding RNAs driving late-stage relapse breast cancer. a Schematic of the pipeline used to identify
lncRNAs driving late-stage relapse breast cancer. b Heatmap showing the mean expression of patient samples and cell lines for the lncRNAs in
late-stage relapse breast cancer. Side bar represent the log fold-change. c Top upregulated gene sets found to be correlated with late-stage
relapse as determined by GSEA. d Top GSEA enrichment up-regulated gene sets.
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performed a gene set enrichment analysis (GSEA) to evaluate the
association of the identified lncRNA genes with cancer gene
signatures (Fig. 1c). Our analysis found enrichment of multiple
gene sets that were associated with breast cancer and estrogen
receptor including MORF_ESR1 (nominal p value= 0.001) and
GSEA sets indicating roles in FIRESTEIN_PROLIFERATION (nominal
p value= 0.001), and TAVAZOIE_METASTASIS (nominal p value=
0.001, Fig. 1c and d). Using the unbiased approach of
transcriptome sequencing and unique patient samples from the
two clinical trials of preoperative neoadjuvant aromatase inhibitor
treated and late-stage relapse patients, we identified 68 lncRNAs
that we believe are associated with late-stage relapse breast
cancer signaling and phenotypes.

LINC00355 is the most up-regulated lncRNA in LSR breast
cancer
We focused on characterizing the top upregulated lncRNA
LINC00355 (NR_145420.1, Fold change= 7.21, p= 2.7e-13), in LSR
breast cancer when comparing early-stage patient samples

(Figs. 1b and 2a). LINC00355 is a previously annotated 1878
nucleotide long lncRNA first identified as an oncogene in bladder
cancer43. Similar to our early-stage patient cohort, LINC00355 was
downregulated in 480 early-stage breast cancer samples from The
Cancer Genome Atlas (TCGA) from multiple breast cancer
subtypes (Fig. 2a): triple negative (n= 72), mean FPKM= 0.151,
HER2+ (n= 29), mean FPKM= 0.215, luminal A (n= 298), mean
FPKM= 0.237, and luminal B (n= 81), mean FPKM= 0.299, and
normal tissue (n= 77), mean FPKM= 0.174. LINC00355 was only
highly expressed in the late-stage relapse breast cancer patient
samples (mean FPKM= 28.092, Fig. 2a). Additionally, we detected
increased LINC00355 expression in publicly available RNA-Seq
data35 of malignant breast cell lines compared to non-malignant
cell lines (p= 0.047, Fig. 2b, Supp. Fig. 2). To better assess
LINC00355 cell type-specific expression and show expression levels
are not due to contamination of using bulk patient tissue from
RNA-Seq, we also assessed its expression in single-cell RNA-Seq
data from breast tissues downloaded from Wu et al.44 We
detected very low, 0.90% or less, of cells expressing LINC00355,
which was restricted to cancer epithelial cells (Supp. Fig. 3a–c). In

Fig. 2 LINC003355 characterization in breast cancer. a Expression of LINC00355 in primary tumors from the The Cancer Genome Atlas (TCGA)
and early-stage and late-stage relapse from patient cohorts. b Sequence expression of LINC00355 in cell line panels and c qPCR from in-house
cell lines showing subtypes. Estrogen Receptor (ER), Progesterone receptor (PR), Human epidermal growth factor receptor 2 (HER2), Tumor
protein 53 (TP53), Mutation (M) d Nuclear localization of LINC00355 in T47D. MTNR1 (cytoplasmic positive control), U1, and MALAT1 (nuclear
positive controls). All data are presented as mean values ± s.d., analyzed by two-tailed paired t-test, and repeated more than two times. Source
data are provided as a Source Data File.

A.M. Eteleeb et al.

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    49 



contrast, XIST lncRNA is expressed in 35% of cancer epithelial cells
and is over 50% expressed in myeloid, cancer-associated
fibroblast, and endothelial cells (Supp. Fig. 3a, d, and e). We
further assessed expression of LINC00355 in normal tissue using
RNA-Seq data from Genotype-Tissue Expression (GTEx) and see
slightly higher expression in whole blood, omentum tissue,
subcutaneous adipose tissue, and higher expression in EBV-
transformed lymphocytes and testis compared to breast mam-
mary tissue (Supp. Fig. 4). Overall, LINC00355 is more highly
expressed in LSR compared to early-stage breast cancer patient
samples, and in malignant compared to non-malignant cell lines
and normal tissues.
Next, we assessed LINC00355 expression in a panel of breast

cancer cell lines by quantitative PCR (qPCR) that included both
luminal A and luminal B subtype cell lines. LINC00355 is expressed
greater than tenfold in breast cancer cell lines compared to the
non-tumorigenic cell line MCF10-A (Fig. 2c). Since subcellular
localization may provide insight into lncRNA putative functions,
we fractionated estrogen receptor positive (ERα) T47D cells, which
had highest endogenous levels of LINC00355, and found that
LINC00355 is pre-dominantly expressed in the nucleus (Fig. 2d). In
summary, we show that LINC00355 previously found to have
oncogenic potential is also highly expressed in breast cancer
patient samples and cell lines. Specifically, we were able to

determine LINC00355 is selectively highly expressed in LSR
breast cancer.

LINC00355 expression promotes proliferation and invasion in
malignant breast cancer cell lines
In order to gain a better understanding of the role LINC00355 plays
in LSR breast cancer, we transiently silenced its expression with
two siRNAs (siRNA1 and siRNA2, Supp. Table 3) in malignant breast
cancer cell lines (T47D and CAMA-1) which have high endogenous
LINC00355 expression (Fig. 3a). As LINC00355 was previously found
to be associated with cellular proliferation45–47, we conducted EdU
(5-ethynyl-2′-deoxyuridine) proliferation assays using flow cyto-
metry in T47D and CAMA-1 cells with at least 50% silenced
LINC00355 expression. We observed a significant decrease of
proliferation in T47D cells lines with silenced LINC00355 compared
to negative control scrambled siRNAs (siRNA1 p= 4.99e-05,
siRNA2 p= 0.006, two-tailed paired t-test; Fig. 3b). Next, we
detected a significant decrease in cell viability for 3 days post 72-h
LINC00355 knockdown compared to control siRNAs by Alamar
Blue Assay (Day 5, siRNA1 p= 0.0007, siRNA2 p= 0.008; Day 6,
siRNA1 p= 0.02, siRNA2 p= 0.02, two-tailed paired t test; Supp.
Fig. 5a). In addition, we assessed DNA content in T47D cells with
siRNAs targeting LINC00355 and detected a decrease in the S
phase of cell cycle (siRNA1 p= 0.002, siRNA2 p= 0.0003, two-

Fig. 3 LINC00355 induces a proliferative and aggressive phenotype in primary breast cancer cells. a Transient knockdown of LINC00355 in
T47D and CAMA-1 cell lines. b Decreased LINC00355 expression decreased proliferation measured by EdU incorporation and c decrease in S
phase. Decreased LINC00355 expression increased d p27Kip protein and e CDKN1B mRNA levels. Fold change normalized to control.
f–h Knockdown expression of LINC00355 decreased cellular invasion. i MCF10A cell line with LINC00355 overexpression and empty vector.
j LINC00355 overexpression increased proliferation measured by EdU incorporation and k increase in S phase. LINC00355 overexpression
decreased l p27Kip protein and m CDKN1B mRNA levels. Fold change normalized to empty vector. n and o LINC00355 overexpression increased
cellular invasion. *p value < 0.05, **p value < 0.005, #p value < 0.0005, no difference (n.d.). All data are presented as mean values ± s.d, analyzed
by two-tailed paired t test, and repeated more than two times. Bar = 25 µM, Dapi stained nuclei are shown in white. Source data are provided
as a Source Data File.
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tailed paired t test, Fig. 3c). A significant decrease in proliferation
(siRNA1 p= 0.0002, siRNA2 p= 0.001, two-tailed paired t test,
Fig. 3b) and S phase of cell cycle (siRNA1 p= 0.007, siRNA2 p=
0.03, two-tailed paired t test, Fig. 3c) was similarly seen in the
second breast cancer cell line CAMA-1.
Due to the importance of the cyclin-dependent kinase inhibitor

p27Kip as one of the key regulators of progression from G1 to S
phase in cell cycle and its frequent decreased concentration in
human malignancies48, we confirmed protein expression of p27Kip

in T47D and CAMA-1 cell lines. Silencing LINC00355 increased
protein levels of p27Kip in both cell lines (T47D, siRNA1 fold = 1.45,
siRNA2 fold 1.79; CAMA-1 siRNA1 fold = 1.97, siRNA2 fold = 2.49,
Fig. 3d). There was also more than 1.5-fold increase of CDKN1B
mRNA, which encodes transcription for p27Kip in LINC00355
silenced cell lines (Fig. 3e).
Next, we evaluated whether LINC00355 promotes cellular

invasion by seeding Matrigel-coated transwells in a modified
Boyden chamber assay. We found decreased cellular invasion
when LINC00355 is silenced in T47D cells (siRNA1 p= 2.98e-06,
siRNA2 p= 4.56e-05, two-tailed paired t test, Fig. 3f and g) and
CAMA-1 cells (siRNA1 p= 0.01, siRNA2 p= 0.006, two-tailed paired
t test, Fig. 3f, h) compared to negative controls.
Further, we developed a MCF10A stable cell line with more than

11,500-fold LINC00355 overexpression compared to empty vector
cells that had negligible LINC00355 expression (Fig. 3i). We
similarly detect an increase in proliferation in overexpression cells
compared to empty vector by EdU assay (p= 0.002, two-tailed
paired t-test, Fig. 3j), Alamar Blue assay (Day 5, p= 0.0006; Day 6,
p= 0.00007, two-tailed paired t test; Supp. Fig. 5b), and S phase in
cell cycle by assessing DNA content (p= 2.33 e-05, two-tailed
paired t test, Fig. 3k). There was also more than 1.5-fold decrease
of p27Kip protein levels (Fig. 3l) and CDKN1B mRNA (p= 0.0019,
two-tailed paired t test, Fig. 3m) in LINC00355 overexpressed cell
lines. Finally, we found increased cellular invasion when LINC00355
is overexpressed when compared to empty vector (p= 0.003, two-
tailed paired t test, Fig. 3n and o) by modified Boyden chamber
assay. These data indicate that LINC00355 induces proliferation
and invasion in cell lines possibly through the regulation of p27Kip.

LINC00355 expression promotes proliferation and invasion in
long-term estrogen deprived cell lines
To further assess the metastatic behavior associated LSR breast
cancer, we determined if LINC00355 also induces aggressive
phenotypes in a late-stage relapse setting by using two ERα+ cell
lines T47D and MCF7 that were deprived of estrogen for longer
than 3 years, termed long-term estrogen deprived (LTED) cells49.
The LTED model has been developed to recapitulate the acquired
resistance to aromatase inhibitors. However, the two LTED models
have independent mechanisms of resistance. The T47D LTED
model lacks ESR1 locus amplification whereas the MCF7 LTED
model has ESR1 amplification leading to increased ERα protein
expression49–51. Wild type T47D cell lines when deprived of
estrogen, termed T47D LTED, show a loss of ERα protein (Fold =
0.21) compared to its wild type counterpart (Fig. 4a). In contrast,
MCF7 cell lines when deprived of estrogen, termed MCF7 LTED,
show an amplified ERα protein level (Fold = 1.88) compared to its
wild-type counterpart (Fig. 4a). LINC00355 expression was
decreased by 65-fold in T47D LTED when compared to wild type
T47D cells as measured by qPCR, and conversely there was a 60-
fold increase of LINC00355 expression in and MCF7 LTED cell lines
compared to wild type MCF7 (Fig. 4b). These results demonstrate
an association of LINC00355 with ERα.
Due to the increased levels of LINC00355 expression in MCF7

LTED cells, we assessed whether LINC00355 promoted aggressive-
ness of MCF7 LTED cells. Greater than 70% silencing of LINC00355
in MCF7 LTED cell lines (Fig. 4c) resulted in a significant decrease
of cellular proliferation (siRNA1 p= 0.0003, siRNA2 p= 0.02, two-

tailed paired t test, Fig. 4d), Alamar Blue assay (Day 5, siRNA1 p=
0.015, siRNA2 p= 0.038; Day 6, siRNA1 p= 0.03, siRNA2 p=
0.0008, two-tailed paired t test; Supp. Fig. 5c), and S phase of cell
cycle (siRNA1 p= 0.0006, siRNA2 p= 0.013, two-tailed paired t
test, Fig. 4e) in MCF7 LTED cells compared to the negative control
scrambled siRNAs. Additionally, we saw more than twofold
increase in p27Kip protein levels (Fig. 4f) and more than 1.5-fold
increase in CDKN1B mRNA expression (Fig. 4g) in the MCF7 LTED
cell line with silenced LINC00355. Further, we evaluated cellular
invasion in MCF7 LTED cells lacking expression of LINC00355. We
observed a significant decrease of invasion (siRNA1 p= 0.002,
siRNA2 p= 0.004, two-tailed paired t test) in MCF7 LTED cells with
siRNAs targeting LINC00355 as compared to cells treated with
negative control scrambled siRNA (Fig. 4h and i). Last, silenced
LINC00355 expression in MCF7 LTED cells then re-introduction of
LINC00355 expression, restores invasiveness of MCF7 LTED cells
compared to silenced cells (siRNA p= 0.018, siRNA plus over-
expression p= 0.012, Supp. Fig. 6).
We overexpressed LINC00355 in the T47D LTED cell lines more

than 15.5-fold compared to empty vector cells that had negligible
LINC00355 expression (Fig. 4j). We detect an increase in
proliferation in T47D LTED overexpressed cells compared to
empty vector by EdU assay (p= 0.019, two-tailed paired t test,
Fig. 4k) and S phase in cell cycle by assessing DNA content (p=
0.007, two-tailed paired t test, Fig. 4l). There was also more than
60% decrease of CDKN1B mRNA (Fig. 4m) in LINC00355 T47D LTED
overexpressed cell lines. We lastly found an increase in cellular
invasion in T47D LTED overexpressed cells when compared to
empty vector (p= 0.0003, two-tailed paired t test, Fig. 4n and o).
Taken together, LINC00355 induces cellular proliferation and
invasion in both malignant breast cancer cell lines and long-
term estrogen-deprived cell lines that mimic late-stage relapse.

LINC00355 binds to MENIN to regulate CDKN1B expression
Since LINC00355 is localized in the nucleus, increases cellular
proliferation, and decreases p27Kip protein levels, we hypothesize
that LINC00355 may transcriptionally regulate CDKN1B, the gene
that encodes for p27Kip protein. Previously it was shown that
MENIN, encoded by MEN1 (multiple endocrine neoplasia 1), is
required for its transcriptional activation of p27Kip by increasing
histone H3 lysine 4 methylation (H3K4me3) at the promoter of
CDKN1B52–55. Thus, we assessed if LINC00355 may directly bind to
MENIN. We first assessed MENIN and ERα protein levels to show
that protein levels did not change upon silencing of LINC00355 in
both the highly expressed primary cell line T47D and the LSR
model MCF7 LTED cell line (Fig. 5a and b). We next conducted an
RNA immunoprecipitation coupled with qPCR (RIP-qPCR) with
MENIN in the T47D cell line. Indeed, we detected a more than 21-
fold enrichment of LINC00355 by RIP-qPCR compared to IgG
control and do not see enrichment of XIST RNA, as a negative
control of MENIN binding (Fig. 5c). We also show LINC00355
increased MENIN binding in MCF7 LTED cells (Fold change = 10.4
in MENIN compared to IgG; Fig. 5d). To orthogonally validate these
findings, we conducted an RNA pull-down assay utilizing a 5′
Bromo-UTP full-length LINC00355 sense labeled probe and a
negative control antisense probe to pull-down proteins that may
be bound to LINC00355. We found that the LINC00355 sense probe
was bound to MENIN protein compared with the control probe
(Fig. 5e) by Western blot of nuclear lysates. To identify the regions
of LINC00355 that bind to MENIN, we conducted cross-linking
immunoprecipitation and qPCR in MCF10A cells transfected with
an empty vector and LINC00355 full length (overexpression) using
eight primers tiling LINC00355 (Supp. Fig. 7a). We detected Primer
4 and Primer 5 tiling 627-1023 nucleotides had higher fold
enrichment (Fold >3 and Fold >5, respectively) of binding to
MENIN (Supp. Fig. 7b). We re-validated our previous findings that
full-length LINC00355 binds to MENIN around 789 nucleotides
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(Fig. 5c and d). These orthogonal methods support LINC00355
binding to MENIN protein. To determine the effects of LINC00355-
MENIN binding at the promoter of CDKN1B to regulate the
expression of p27Kip protein, we silenced LINC00355 to show a
significant increase in MENIN occupancy at the CDKN1B promoter
in T47D cells (siRNA1 p= 7.33 e -07, siRNA2 p= 0.0006, two-tailed
paired t test, Fig. 5f) as compared to IgG control. We also observed
an increase in H3K4me3 at the promoter of CDKN1B with silenced

LINC00355 (siRNA1 p= 0.004, siRNA2 p= 0.01, two-tailed paired t-
test, Fig. 5g). The increase in MENIN and H3K4me3 occupancy was
further detected in MCF7 LTED cells with silenced LINC00355 in
chromatin immunoprecipitation (ChIP) with MENIN (siRNA1 p=
0.03, siRNA2 p= 0.001) and ChIP with H3K4me3 (siRNA1 p=
0.0001, siRNA2 p= 0.002, two-tailed paired t test, Fig. 5h and i).
Decreased MENIN and H3K4me3 occupancy was detected in
MCF10A cells with overexpressed LINC00355 (MENIN; p= 0.001,

Fig. 4 LINC00355 induces proliferation and invasion in long-term estrogen deprived cell lines. a Expression of Estrogen Receptor in T47D
and MCF7 wild-type and long-term estrogen deprived (LTED) cell lines. Fold change normalized to respective wild-type cell lines. b LINC00355
expression in primary and LTED cell lines. c Transient knockdown of LINC00355 in MCF7 LTED cell lines. d and e Decreased LINC00355
expression in MCF7 LTED cells decreased proliferation by EdU and S phase. f Decreased LINC00355 expression increased p27Kip protein and
g CDKN1B mRNA expression. Fold change normalized to control. h and i Cellular invasion decreased with LINC00355 knockdown. j LINC00355
expression inT47D LTED overexpression cell lines. k and l LINC00355 overexpression in T47D LTED cells increased proliferation by EdU and S
phase. m LINC00355 overexpression decreased CDKN1B mRNA expression. n and o Cellular invasion increased with LINC00355 overexpression.
*p value < 0.05, **p value < 0.005, #p value < 0.0005, no difference (N.D). Bar = 25 µM. All data are presented as mean values ± s.d, analyzed by
two-tailed paired t test, and repeated more than two times. Dapi stained nuclei are shown in white. Source data are provided as a Source
Data File.
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H3K4me3; p= 0.01, two-tailed paired t test, Fig. 5j and k). We
additionally identified two other genes regulated by MENIN
including AGR356 and FOXA156, that are also shown to be
regulated by LINC00355. We show a significant decrease of
expression of CDKN1B (p= 0.04), AGR3 (p= 0.005) and FOXA1 (p=
0.02) using a siRNA targeting MEN1 (Supp. Fig. 8). We again
validate a significant increase of CDKN1B expression (p= 0.02)
with silenced LINC00355 expression and additionally detected an
increase of AGR3 (p= 0.02) and FOXA1 (p= 0.004) genes (Supp.
Fig. 8). Taken together, we provide evidence that LINC00355
functions by binding to the MENIN protein, which decreases its
occupancy at the promoter of CDKN1B, decreasing protein levels

of p27Kip, increasing proliferation, and cellular invasion in late-
stage relapse breast cancer models (Fig. 6).

DISCUSSION
Although most relapses occur during the first 5 years after breast
cancer diagnosis about 30% of ER+ positive breast cancer
patients relapse more than 5 years and up to 10 years after their
5-year endocrine therapy treatment. Since distant metastases are
responsible for the majority of breast cancer deaths, finding ways
to reduce the risk of distant metastases associated with late
relapse is critical in improving survival rates from the disease. Our

Fig. 6 Model showing regulation of LINC00355. MENIN binding to LINC00355 changes its occupancy at the CDKN1B promoter to decrease
CDKN1B gene expression and p27Kip protein levels. This alters S phase cell cycle checkpoint that leads to increased cellular proliferation and
contributing to phenotypes of late-stage relapse breast cancer. Created with Biorender.com.

Fig. 5 LINC00355 binds to MENIN to regulate p27KIP expression. Protein expression in a T47D and b MCF7 LTED cells upon LINC00355
knockdown. Estrogen Receptor α (ERα). Fold change normalized to control. LINC00355 RNA immunoprecipitation (RIP) of MENIN in c T47D and d
MCF7 LTED cells. e MCF7 LTED RNA pull-down of LINC00355 with MENIN. T47D cell line chromatin immunoprecipitation (ChIP) of f MENIN and g
H3K4me3 at the CDKN1B promoter with knock down of LINC00355. MCF7 LTED cell line ChIP of h MENIN and i H3K4me3 at the CDKN1B promoter
with knock down of LINC00355. MCF10A overexpression cell line ChIP of j MENIN and k H3K4me3 at the CDKN1B promoter. *p value < 0.05, **p
value < 0.005, #p value < 0.0005. All data are presented as mean values ± s.d, analyzed by two-tailed paired t test, and repeated more than two
times. Source data are provided as a Source Data File.
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study used ER+ early-stage (II and III) tumor tissues isolated from
two neoadjuvant aromatase inhibitor (AI) therapy trials. This
unique set of tumor samples allowed us to assess lncRNA
expression in a preoperative AI treatment setting that is currently
being assessed as a new treatment option. Additionally, we
incorporated a unique very limited cohort of LSR patients. Thus,
our study provides a systematic transcriptome analysis of lncRNAs
expression in early-stage and late-stage relapse breast cancer
patients to detect deregulated lncRNAs significantly altered in LSR
breast cancer.
Through our analysis of lncRNAs in LSR breast cancer, we

prioritized the most up-regulated lncRNA, LINC00355. Notably,
LINC00355 was previously reported to promote proliferation in
multiple cancer types including bladder cancer, colorectal cancer,
prostate cancer, lung adenocarcinoma, and head and neck
squamous cell carcinoma43,45–47,57–59 and induce epithelial to
mesenchymal transcription, and serve as a diagnostic biomarker in
colon cancer45–47,57–60; however, it has not yet been identified in
breast cancer and identified here specifically in ER+ late-stage
relapse breast cancer. High nuclear enrichment of LINC00355 was
also previously detected in bladder cancer43, which we confirmed
in breast cancer. This led us to hypothesize that LINC00355 may
also play a role in inducing proliferation in LSR breast cancer
through transcriptional regulation of key genes. Interestingly, we
found that LINC00355 induced proliferation and cellular invasion in
malignant breast cancer cell lines. We also utilized MCF7 and T47D
long-term estrogen receptor deprived cells lines that mimic late-
stage relapse patient samples as they have been deprived of
estrogen for longer than three years and have previously been
shown to provide an in vitro parallel of patients treated with
aromatase inhibitor having post-treatment loss or amplification of
estrogen receptor61. When using the LTED cell lines, we showed
LINC00355 induced proliferation and cellular invasion. Because the
MCF7 LTED cell line has amplified estrogen receptor protein, we
have also provided evidence that LINC00355 may have a role in an
ER+ amplified setting, a hypothesis that needs further
investigation.
As LINC00355 was able to induce proliferation, we decided to

investigate a key cell signaling regulator, p27Kip. p27Kip signaling is
highly complex and has multiple modes of both transcriptional
and post-transcriptional regulation62. Indeed, we found that our
breast cancer cell lines with high levels of LINC00355 also had
decreased expression p27Kip. Moreover, we determined that
LINC00355 expression is also inversely correlated with CDKN1B
gene expression. This indicated that LINC00355 might transcrip-
tionally regulate CDKN1B to alter cellular proliferation. We
hypothesized that LINC00355 may interact with a negative
regulator of cell cycle separating the protein from its native
target, thus causing an uncontrolled increase in cellular prolifera-
tion. There are numerous well-known examples of lncRNAs that
function as negative regulators or decoys including: CISAL63,
ROR64, PANDA65, and MEG366. Previous research determined that
the CDKN1B gene is transcriptionally negatively regulated by
MENIN in ER+ breast cancer56 through epigenetic modifications
and maintenance of transcription at multiple loci for cell cycle
regulators52,54,67. Given this, we focused our study on MENIN to
determine if LINC00355 interacts with MENIN sequestering it from
the promoter of CDKN1B gene leading to decreased p27Kip protein
levels and disruption of the cell cycle control and increasing
proliferation. This study indicates a lncRNA to bind to MENIN
which provides evidence of the important functional regulation of
lncRNAs. An important unanswered question is the stoichiometry
of LINC00355 in regulating the association of MENIN with the
CDKN1B locus. Further, we highlight the importance of lncRNA
expression in LSR breast cancer that may be used as novel
therapies in the future. In conclusion, our study provides a
landscape of lncRNAs in LSR and provides key evidence of their
contribution to LSR breast cancer.

METHODS
Clinical samples and cell lines
The primary breast cancer samples for this study were accrued from two
neoadjuvant endocrine therapy trials32,33. RNA-Seq data accrued from two
neoadjuvant aromatase inhibitor therapy trials (ACOSOG-Z1031,
NCT00084396, and NCT00265759)32–34 are available via the dbGAP
database (with accession phs000472). The studies were supported by the
Clinical Trials Support Unit and approved by the institutional review boards
of all participating institutions; all patients provided signed informed
consent. Twenty-four late-stage relapse patients were enrolled and
consented under a banking protocol approved by the Washington
University School of Medicine Institutional Review Board (approval number
201102244, Supp. Table 1), their tumors were resected for RNA sequencing.
PolyA RNA was isolated and created into Illumina TruSeq libraries run on
Illumina HiSeq 2000 platform (accession GSE189389). The RNA-Seq gene
expression data (FPKM) and the clinical data of TCGA BRCA samples were
downloaded from the TCGA data portal. RNA-Seq data of the 32 breast
cancer cell lines were obtained from the NCBI Gene Expression Omnibus
(accession GSE48216)35. All cell lines with “unknown” subtype were
removed and a representative number of cell lines from each subtype were
retained.

Sequence alignment and transcript quantification
All sequencing reads from both patient and cell lines data were aligned to
the human reference genome hg19 Ensembl release 75 using TopHat
version v2.0.868. TopHat was run according to an in-house pipeline at The
McDonnell Genome Institute (bowtie-version= 2.1.0, library-type fr-
unstranded, mate-inner-dis 254, and mate-std-dev 50). The remaining
TopHat parameters were left to their default values. For accurate
alignment, transcriptome index file (transcript sequences) was provided
to guide the alignment. Raw read counts for transcripts were generated
using featureCounts version v1.4.6-p369 and were used to compute
transcript expression levels as normalized in FPKM (Fragments Per Kilobase
of transcript per Million mapped reads) format.

RNA-Sequencing data analysis
Differential expression analysis was performed between early-stage and
late-stage relapse samples using the negative binomial generalized log-
linear model and likelihood ratio tests capabilities of edgeR version v3.8.670

using the raw read counts. To correct for batch effect, RUVSeq R package
version v1.0.071 was used with a list of negative control genes72. To
enhance our confidence in the differentially expressed genes we
discovered, lowly expressed transcripts were removed and only transcripts
with expression > 1 FPKM in at least 50% of samples in either group were
retained for downstream analysis. All transcripts with FDR < 0.001 and
absolute log fold change > 2 were considered differentially expressed
transcripts. TCGA subtypes and cell lines expression difference significance
was calculated specifically for LINC00355 using the nonparametric
Wilcoxon rank-sum test.

Gene enrichment analysis
To identify gene signatures that are associated with the identified
differentially expressed genes, a gene set enrichment analysis (GSEA)73

was performed on the list of up and down regulated lncRNAs with 1000
gene set permutations using Signal2Noise metric. Significantly enriched
gene sets were determined by false discovery rate (FDR) adjusted P ≤0.1
and normalized enrichment score (NES) ≥ 1.5.

Cell Culture
All breast cancer cell lines were a kind gift from Dr. Matthew Ellis and Jieya
Shao at Washington University in St. Louis. T47D, MCF7, HCC1428, BT483,
ZR75B, and HCC1500 cell lines were grown in RPMI 1640 media (Invitrogen,
Carlsbad, CA), 10% fetal bovine serum (Sigma, St. Louis, MO), 1% HEPES
(Sigma), 0.5% glucose (Sigma), 1% sodium pyruvate (Sigma), 1%
L-glutamine (Sigma), and 1% penicillin/streptomycin (Invitrogen, Carlsbad,
CA). T47D LTED and MCF7 LTED cells were grown in phenol red free RPMI
1640 media (Invitrogen), 10% Charcoal stripped bovine serum (Sigma), 1%
HEPES, 0.5% glucose, 1% sodium pyruvate, 1% L-glutamine, and 1%
penicillin/streptomycin. CAMA-1 and BT-474 cells were grown in DMEM
(Invitrogen), 10% fetal bovine serum, and 1% penicillin/streptomycin.
MDA175 were grown in DMEM F12 (Invitrogen), 10% fetal bovin serum,
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and 1% penicillin/streptomycin. MCF10A cells were grown in DMEM F12
(Invitrogen), 10% horse serum serum, 0.5 μg/mL hydrocortisone, 10 μg/mL
insulin, 20 ng/mL EGF and 1% penicillin/streptomycin. We silenced
expression of LINC00355 using custom silencer select RNAs (siRNAs)
targeting LINC00355 or Silencer Select Negative Control No.1 siRNA
(Thermofisher, Austin, TX). siRNA sequences are listed in Supplementary
Table 3.
Full-length LINC00355 transcript was PCR amplified from T47D cells and

cloned into the pCFG5-IEGZ vector (a kind gift from Dr. Ron Bose,
Washington University). Full-length LINC00355 inserts were confirmed with
Sanger sequencing at GeneWiz. Retroviral infection of cells was performed
according to Kauri et al.74. Briefly, the amyotrophic phoenix cell line was
transfected with 10 μg of pCFG5-LINC00355 or empty vector control by
calcium phosphate precipitation and incubated for 24-h. Viral supernatants
were harvested after an additional 24-h incubation. Virus was added to
cells seeded in six-well dishes in the presence of 8 μg/mL polybrene
(Sigma), centrifuged at 300 Å~ g for 90min, and fresh media was added to
the plate. After 14 days of Zeocin (Invitrogen) selection cells were used for
assays. MCF10A cells or T47D LTED cells that had low endogenous
expression of LINC00355 were infected with virus expressing LINC00355 or
empty vector for 48 h and selected with 100 μg/mL Zeocin.

Nuclear cytoplasmic isolations
Nuclear and cytoplasmic isolations were conducted using the PARIS Kit
(Thermo Fisher, Waltham, MO) following the manufacturer’s protocol. Total
RNA was collected as described below. Nuclear and cytoplasmic isolations
were calculated by normalizing respective gene to total RNA expression.

Quantitative real-time PCR
Total RNA was isolated for each breast cancer cell line using NucleoSpin
RNA plus with DNA removal column (Macherey-Nagel, Duren). Total RNA
was then transcribed to cDNA with SuperScript III First-strand cDNA system
(Invitrogen) to verify expression of genes and verify knockdown
efficiencies using Fast SyberGreen Master Mix (Invitrogen) as per the
manufacturer’s protocol. Primer sequences are available in Supplementary
Table 3.

Modified Boyden chamber assay
Cell lines were seeded at 350,000 cells in a six-well dish. The next day cells
were transfected at 50 nM with two independent custom designed siRNAs
or a negative scramble control (Supplementary Table 3) with Lipofecta-
mine RNAiMax (Invitrogen) for 72-h or 2 µg pCFG5-LINC00355 or empty
vector control with Lipofectamine 3000 (Invitrogen) for 72-h. Cells were
then harvested and re-seeded in complete media at 200,000 cells on an
8.0 µM permeable membrane support transwell (Corning, Corning, NY) pre-
coated with 200 µg/mL Matrigel (Corning) in 24-well plates creating a
modified Boyden chamber assay. A serum gradient was established with
cells plated in serum-free media added to the bottom of the well. Cells
were allowed to invade overnight and then fixed with 4% paraformalde-
hyde (Electron Microscopy Sciences, Hatfield, PA). Next, nuclei were stained
with DAPI (Sigma) (1 µg/µL). A cotton swab was used to remove non-
invading cells from the top of the membrane. Invaded DAPI-stained cells
were then imaged with Q-Capture Pro software on an Olympus IX70
microscope, quantified using ImageJ software (http://imagej.nih.gov/ij/),
and statistical significance was determined by a student’s t test. Five or
more images were taken per transwell membrane at 20× magnification.
Assays were repeated two to three times.

Proliferation assay
Cell lines were seeded at 350,000 cells in a six-well dish. The next day cells
were transfected at 50 nM with siRNAs targeting LINC00355 or negative
control pCFG5-LINC00355 or empty vector control as described above in
Modified Boyden chamber assay section. Seventy-two hours later cells
were pulsed with EdU (5-ethynyl-2′-deoxyuridine) (Thermo Fisher, Carls-
bad, CA, cat# C10420) for 3 h and harvested by trypsinization. Cells were
then fixed, permeabilized, and washed following manufacturer’s instruc-
tions. Cells were stained for DNA content with FxCycle Violet (Thermo).
Analysis of EdU and cell cycle was assessed by measuring DNA content on
a flow cytometer machine (FACScan, Becton Dickinson) at the Siteman
Cancer Center Flow Cytometry Core. We collected a minimum of 25,000
cells per sample in triplicate. FlowJo Version10 (Becton Dickinson) was
used to analyze data.

Western blot
Protein was collected by plating 300,00–350,000 representative cancer
cells in a six-well dish. Cells were transfected as described above. Cells
were then lysed with Tris Lysis buffer (50mM TrisHCl, 1% Triton X-100,
131mM NaCl, 1 mM sodium orthovanadate, 10 mM Na4P207, 10 mM NaF,
1 mM EDTA, and proteasome inhibitor), run on an agarose gel and
transferred to nitrocellulose membranes. Blots were then probed overnight
at four degrees with respective antibodies. All antibodies and concentra-
tions are listed in Supplementary Table 4. Blots were then washed with
TBST buffer and then applied with secondary goat anti-rabbit HRP linked
or goat anti-mouse HRP-linked antibodies (Thermo Fisher, Waltham, MA).
Lastly, blots were washed, visualized with Clarity Western ECL Substrate
(BioRad, Hercules, CA) and imaged using the ChemiDoc XRS+ System
(BioRad). Blots were derived from the same experiment. Raw western blots
are shown in Supplementary Fig. 9 were processed in parallel and derived
from the same experiment.

RNA immunoprecipitation (RIP)
RIP coupled to qPCR assays were conducted by isolating nuclear lysates
from ten million T47D or MCF7 LTED cells following the NER-PER Nuclear
and Cytoplasmic Extraction Reagent (Thermo Fisher). Nuclear lysates were
then incubated overnight rotating with 5 µg of Anti-Menin antibody or IgG
antibody isotype control in RIPA wash buffer (50mM Tris-HCl pH 7.4,
150mM NaCl, 1 mM MgCl2, 1% NP40, 0.5% Na-Deoxycholate, 0.05% SDS,
1 mM EDTA) and SUPERase-in RNAse inhibitor (Invitrogen). The next day
50 µL of Invitrogen Dynabeads Protein G were added to the antibody
lysate/mixture and rotated for 1–2 h at 4 °C. Next, beads were washed six
times with RIPA wash buffer using a magnetic bead separator. Protein was
then digested with Proteinase K buffer (RIPA buffer, 10% SDS, 10mg/ml
Proteinase K), at 55 °C for 30min shaking. RNA was phenol:chloroform:
isoamyl alcohol extracted following the general protocol (Thermo Fisher).
Last, gDNA was removed from RNA using ArticZymes Heat and Run gDNA
removal kit following the manufacturer’s protocol (Tromso, Norway). cDNA
was made using SuperScript III First strand cDNA system as indicated
above and qPCR was run with Fast SyberGreen MasterMix and indicated
primers (Supplementary Table 3). Fold enrichment of qPCR results were
calculated following Sigma-Aldrich Data Analysis Calculation Shell by
comparing non-specific control IgG antibody raw CTs to MENIN or
H3K4me3 RNA binding protein CT normalized against 1% input.

BrU-labeled RNA pull-down
Full-length LINC00355 RNA probes were made using the Promega
Riboprobe in vitro transcription kit from 2.5 μg of linearized DNA in the
pGEM-3Z vector (Madison, WI). Control antisense probes were made by
in vitro transcription from the SP6 promoter. LINC00355 RNA pull-down
experiments were performed in MCF7 LTED nuclear lysates following the
RiboTrap Kit manufacturer’s protocol (MBL, Woburn, MA).

Chromatin immunoprecipitation (ChIP)
ChIP coupled to qPCR assays were conducted by first sonicating five
million cells in SDS lysis buffer (1% SDS, 500mM EDTA, 50mM Tris-HCl
pH8). Next, immunoprecipitation with 5 µg of IgG, MENIN, or H3K4me3
antibodies was done by incubating sonicated lysate with indicated
antibody in ChIP Dilution Buffer (0.01% SDS, 1.10% Triton X-100, 1.2 nM
EDTA, 16.7 mM Tris-HCl pH8, 167mM NaCl), and 1X Halt Protease and
Phosphatase inhibitors overnight with rotation at 4°. The next day 50ul of
Dynabeads Protein G (Invitrogen) were added to the antibody lysate
mixture and rotated for 1 h. Bead/lysate mixture was then washed once
with Low Salt Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20mM
Tris-HCl pH8, 150mM NaCl), then High Salt Buffer (0.1% SDS, 1% Triton X-
100, 2 mM EDTA, 20mM Tris-HCl pH8, 500mM NaCl), Lithium Chloride
Wash Buffer (0.25 M lithium chloride, 1% NP40, 1% sodium deoxycholate,
1 mM EDTA, 10mM Tris-HCl pH8), and finally two washes with Tris-HCl
EDTA Buffer (10mM Tris-HCl pH8, 1 mM EDTA). DNA was eluted by
incubating beads for 30min at room temperature with SDS Elution
Buffer (1% SDS, 0.1 M sodium bicarbonate) followed by 1.25 M NaCl and
2.5 mg/ml RNAse A at 95° for 15min shaking followed by addition of
Proteinase K buffer (1 µL 10mg/ml Proteinase K, 5 µM 0.5uL EDTA, 10 µL
1M Tris pH7.5) shaking at 60° for 15min. DNA was then isolated using
phenol:chloroform:isoamyl alcohol extraction following the general proto-
col as mentioned above. DNA was diluted by five and used for qPCR. The %
input calculation was determined by comparing CT values from input DNA
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and ChIP DNA for the CDKN1B target promoter region using the following
equation:
%Input=% of starting input fraction × 2^[CT(input)−CT(ChIP)]. Primer
sequences are available in Supplementary Table 3.

Single-cell RNA sequencing analysis
Breast single-cell data from 26 patients using the 10x chromium platform was
downloaded from Gene Expression Omnibus (GSE176078) from Wu et al.44

Seurat v4.1.0 (Butler et al.75; Hafemeister and Satija76) was used for all
subsequent analyses. We applied a series of quality filters to the data to
remove barcodes which fell into any one of the following categories
recommended by Seurat: transcript counts below 300; total genes expressed
below 200 and above 10,000; UMI count below 1000 or above 10,000;
mitochondrial gene expression larger than 10%. The Seurat object was
constructed using the published gene and feature matrices across the
sample cohort. The dataset was scaled and normalized and corrected for
batch effects using Seurat’s “SCTransform” function (regressing by
nCount_RNA and percent of mitochondrial DNA, variable.features
n= 2000). Cells were clustered using the Louvain algorithm (Blondel
et al.,77) and top 30 PCA dimensions using the following functions:
“FindNeighbors” and “FindClusters” (resolution = 0.5). The resulting merged
and normalized matrix was used for the subsequent analysis. Cells were
annotated using the published metadata from the original publication.

Alamar blue assay
Cell lines were seeded at 350,000 cells in a six-well dish. The next day cells
were transfected at 50 nM with two independent custom designed siRNAs or
a negative scramble control (Supplementary Table 3) with Lipofectamine
RNAiMax (Invitrogen) for 72 h or 2 µg pCFG5-LINC00355 overexpression or
empty vector control with Lipofectamine 3000 (Invitrogen) for 72 h. Cells
were then harvested and re-seeded in complete media in 96-well plates of
cells. The plates were incubated for 3 days. Percent viability was scored by
incubating cells for 3-h with AlamarBlue HS Cell Viability reagent (Invitrogen
A50100). The reaction was stopped by the addition of 1% SDS. Fluorescence
Ex/Em 540/590 was read in a Varioscan Lux plate reader. The fluorescence
values for the vehicle plates were averaged and percent viability was
determined by the formula: Percent viability= (average vehicle− value)/
(average vehicle− average resazurin in media blank) Å~ 100.

Cross-linking immunoprecipitation (CLIP)
Prospective cells are seeded at twenty million in 150 cm dish. The next day
cells are washed with 15ml ice cold PBS twice and adjusted to 10mls per
dish. Dishes are uncovered and irradiated with 150mJ/cm2 of UVA
(254 nm) in Stratalinker. Cells are then harvested and centrifuged at 2000
RPM at 4 °C for 5 min. Cell pellets are resuspended by adding 1ml of NP-40
lysis buffer (20mM Tris–HCl at pH 7.5, 100mM KCl, 5 mM MgCl2, and 0.5%
NP-40) with 1ul protease inhibitors, and 1mM DTT then incubated on ice
for 10min and centrifuge at 10,000 RPM for 15min at 4 °C. Supernatants
were collected and 1U/μl RNase T1 was added then incubated at 22 C for
30min. 35ul of 5 M EDTA was added to stop reaction. Protein G Beads were
washed two times with ice-cold PBS per sample and resuspended in 100uls
NT2 buffer (50mM Tris–HCl at pH 7.5, 150 mM NaCl,1 mM MgCl2, 0.05%
NP-40) with 5ug of respective antibody, then subsequent rotation for 1 h at
room temperature. All antibodies and concentrations are listed in
Supplementary Table 4. Beads are then washed with NT2 buffer to remove
excess antibody. Lysates are then added to beads for three hours at 4 °C,
washed and incubated with 20 units RNAse-free DNase I for 15min at 37 °C
thermomixer shaking slowly. Protein kinase buffer (141 uls NP-40 lysis
buffer, 0.1% SDS, 0.5 mg/ml Proteinase K) is then added and incubated for
15min at 55 °C on thermomixer shaking at max speed. Supernate is then
collected and isolation of RNA is conducted using standard phenol:
cholorform:isoamyl alchohol protocol.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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