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ABSTRACT

As part of the Multiple Myeloma Research Foundation (MMRF) im-
mune atlas pilot project, we compared immune cells of multiple myeloma
bone marrow samples from 18 patients assessed by single-cell RNA se-
quencing (scRNA-seq), mass cytometry (CyTOF), and cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq) to understand
the concordance of measurements among single-cell techniques. Cell type
abundances are relatively consistent across the three approaches, while vari-
ations are observed in T cells, macrophages, and monocytes. Concordance
and correlation analysis of cell type marker gene expression across differ-
ent modalities highlighted the importance of choosing cell type marker
genes best suited to particular modalities. By integrating data from these
three assays, we found International Staging System stage 3 patients ex-
hibited decreased CD4* T/CD8* T cells ratio. Moreover, we observed

Introduction

Single-cell sequencing technologies offer advantages over traditional bulk

methods in cancer genomics research for evaluating cellular heterogeneity

and investigating evolution of cellular subpopulations between the tumor and
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upregulation of RAC2 and PSMBY, in natural killer cells of fast progressors
compared with those of nonprogressors, as revealed by both scRNA-seq
and CITE-seq RNA measurement. This detailed examination of the im-
mune microenvironment in multiple myeloma using multiple single-cell
technologies revealed markers associated with multiple myeloma rapid pro-
gression which will be further characterized by the full-scale immune atlas

project.

Significance: scRNA-seq, CyTOF, and CITE-seq are increasingly used for
evaluating cellular heterogeneity. Understanding their concordances is of
great interest. To date, this study is the most comprehensive examination of
the measurement of the immune microenvironment in multiple myeloma
using the three techniques. Moreover, we identified markers predicted to
be significantly associated with multiple myeloma rapid progression.

its microenvironment. For example, single-cell methods have been exten-
sively applied to multiple myeloma, a highly heterogeneous disease marked
by uncontrolled clonal expansion of plasma cells. Single-cell RNA sequencing
(scRNA-seq) has been used to examine tumor and immune cell populations (1,

2) and mass cytometry (CyTOF) to evaluate the impact of drugs on immune
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populations in multiple myeloma (3). The third technology, cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq), is a more recent,
multimodal approach with simultaneous quantification of single-cell transcrip-
tomes and surface proteins. All three approaches enable identification of cell
types, cell states, and characterization of cellular heterogeneity at transcrip-
tomic and/or protein levels. Consequently, understanding their concordances

across technologies is of great practical interest.

In addition, the bone marrow microenvironment plays an important role
in the evolution of premalignant multiple myeloma, multiple myeloma pro-
gression, and treatment response. Single-cell transcriptomics analysis of the
tumor microenvironment (TME) revealed compositional alterations begin at
the monoclonal gammopathy of undetermined significance (MGUS) stage, in-
cluding enrichment of T cells, natural killer (NK) cells, and CD16™ monocytes
(2). Specifically, the percentage of CD4™T T cells was significantly reduced in
bone marrow of patients with multiple myeloma, leading to altered CD4*
T/CD8™ T ratio (4). When comparing the clinical status, the ratio decreased
in International Staging System (ISS) stage 3 patients compared with stage 1 pa-
tients (5). With respect to treatment, the proportion of CD3™ T cells was lower
in treated patients compared with patients with chemo-naive multiple myeloma
(6). Further work is needed to expand initial findings using various assays and
reveal candidate markers for characterizing clinical features of patients with

multiple myeloma and optimizing treatment.

Combining the timeliness of the technology concordance question with fur-
therance of multiple myeloma research, we subjected bone marrow samples
from 18 patients with multiple myeloma to scRNA-seq, CyTOEF, and CITE-seq,
examining the similarities across the aforementioned single-cell techniques.
We used the results to investigate the relationship between immune popula-
tion compositional alterations and disease stages and revealed a set of markers

associated with multiple myeloma rapid progression.

Materials and Methods

Ethics Approval and Consent to Participate

All procedures performed in studies involving human participants were in
accordance with the ethical standards of the Multiple Myeloma Research Foun-
dation (MMREF) research committee. These samples provided by MMRF were
all from the MMRF’s CoMMpeass clinical trial (NCT NCT01454297). Written
informed patient consent was obtained from all patients for the collection and
analysis of their samples by the MMRF. The CoMMpass study was conducted
in accordance with recognized ethical guidelines in the United States and Eu-
ropean Union. The Institutional Review Board at each participating center

approved the study protocol.

Ammonium-chloride-potassium Lysis of Bone
Marrow Aspirates

Bone marrow aspirate (BMA) samples obtained from subjects enrolled in the
MMRF CoMMpass study (NCT01454297). Any blood clots were removed
from BMA samples via passage through 70 mmol/L cell strainer. BMA sam-
ples were aliquoted into 5 mL aliquots in 50 mL conical tubes and 45 mL of
22 mmol/L filtered ammonium-chloride-potassium (ACK) lysing buffer (155
mmol/L ammonium chloride/10 mmol/L potassium bicarbonate/0.1 mmol/L
Ethylenediaminetetraacetic Acid (EDTA)/pH7.4) was added to each 5 mL
aliquot and the tune gently inverted several times to mix. Tubes were then cen-

trifuged at 400 x g for 5 minutes. The supernatant was removed and the cell

Cancer Res Commun; 2(10) October 2022

pellet resuspended with 5 mL of RPMI1640 and transferred to a clean tube. All
aliquots of ACK-lysed BMA aliquots were combined into 1 x 50 mL tube, the
volume adjusted to 50 mL with RPMI1640. The cells were then mixed by gentle
inversion and the tube centrifuged at 400 x g for 5 minutes. The supernatant
was then removed by aspiration. Depending on the size of the BMA cell pellet,
the cell pellet resuspended in 1-10 mL of EasySep buffer [PBS containing 2%
FBS (v/v) and 1 mmol/L EDTA (PBS/FCS/EDTA buffer)]. A total of 25 mL of

cell suspension was removed for cell counting.

Isolation of CD138-positive and CD138-negative
Cells from BMA

CD138-negative (CD1387) immune cell mononuclear cells in BMAs from
subjects enrolled in the MMRF CoMMpass study (NCT NCT01454297)
were isolated via negative selection from CD138-positive (CD138") myeloma
cells using the EasySep immunomagnetic bead technology (EasySep Human
CD138-Positive Selection Kit: Stem Cell Technologies) in accordance with the
manufacturers protocol. Briefly, 100 x 10° cell/mL bone marrow mononuclear
cell (BMMC) in a sterile 17 x 100 mm (14 mL) tube were gently mixed and
incubated with 100 mL/mL CD138 selection antibody cocktail for 15 minutes
at room temperature. A total of 50 mL/mL of EasySep magnetic nanoparti-
cles was then added to the cell suspension, gently mixed, and incubated for
a further 10 minutes at room temperature. The volume of the cell suspension
was then adjusted to 8 mL with PBS containing 2% FBS (v/v) and 1 mmol/L
EDTA (PBS/FCS/EDTA buffer) and the cell suspension mixed by gentle pipet-
ting (2-3x). The tube was then placed in the magnetic separator. After 5
minutes incubation at room temperature, the magnet and tube were carefully
inverted to pour off the supernatant into a sterile 50 mL conical tube. This
supernatant contains the heterogeneous CDI38~ immune cell mononuclear
population (MNC). The tube was then removed from the magnet and an ad-
ditional 8 mL of PBS/FCS/EDTA added, gently mixed, and returned to the
magnetic separator. Again, after 5 minutes incubation in the magnetic separa-
tor, the tube and magnet were carefully inverted to pour of the supernatant into
the 50 mL collection tube. This PBS/FCS/EDTA “wash” step was repeated once
more resulting in approximately 24 mL suspension of CD138~ bone marrow
MNCs. CD138~ MNCs were then pelleted by centrifugation at 400 x g for 5
minutes and the supernatant removed by aspiration. The CD138~ MNC pellet
was resuspended in freezing medium (90% FCS/10% DMSO) at a concentra-
tion of approximately 8-10 x 10° cells/mL prior to cryogenic storage in liquid

nitrogen.

Processing of BMMC and Library Prep From MMRF
CoMMpass Study for scRNA-seq at Washington
University in St. Louis

Washington University in St. Louis (WUSTL) Cell Thawing: Multiple myeloma
BMMC aliquots were thawed in 37°C water bath. Cells were then pelleted by
centrifugation at 300 x g for 5 minutes and all supernatant was removed. To
prepare cells for the Miltenyi Dead Cell Removal Kit, cells were resuspended
in 100 pwL of beads and incubated at room temperature for 15 minutes. Dead
cells were depleted using the autoMACSPro Separator. Live cells were pelleted
by centrifugation at 450 x g for 5 minutes. Cells were finally resuspended in
ice-cold PBS and 0.5% BSA and loaded onto the 10x Genomics Chromium
Controller and using the Chromium Next GEM Single-Cell 3 GEM, Library
and Gel Bead Kit v3.3. Utilizing the 10x Genomics Chromium Single-Cell 3'v3
Library Kit and Chromium instrument, approximately 16,500 to 20,000 cells

were partitioned into nanoliter droplets to achieve single-cell resolution for
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a maximum of 10,000 individual cells per sample. The resulting cDNA was
tagged with a common 16nt cell barcode and 10nt Unique Molecular Identi-
fier (UMI) during the Reverse Transcription (RT) reaction. Full-length cDNA
from poly-A mRNA transcripts was enzymatically fragmented and size se-
lected to optimize the cDNA amplicon size (~400 bp) for library construction
(10x Genomics). The concentration of the 10x single-cell library was accurately
determined through qPCR (Kapa Biosystems) to produce cluster counts appro-
priate for the HiSeq 4000 or NovaSeq 6000 platform (Illumina). A total of 26 x
98 bp (3'v2 libraries) sequence data were generated targeting between 25K and
50K read pairs/cell, which provided digital gene expression profiles for each
individual cell.

Icahn School of Medicine at Mount Sinai BMMC
Processing Differences From WUSTL

BMMC aliquots were partially thawed in 37°C water bath. A total of 1 mL of
warm thawing media (RPMI 4 10% FBS) was added to the partially thawed
BMMC aliquot and the entire volume was transferred to a 15 mL conical tube
containing 10 mL of warm thawing media. The empty BMMC tube was rinsed
with another 1 mL of thawing media which was then also transferred to the
15 mL conical tube. Cells were processed using the EasySep Dead Cell Removal
(Annexin V) Kit (StemCell Technologies, catalog no. 17899).

scRNA-seq Data Quantification Preprocessing

For scRNA-seq analysis, the proprietary software tool Cell Ranger v3.0.0 from
10x Genomics was used for demultiplexing sequence data into FASTQ files,
aligning reads to the human genome (GRCh38), and generating gene-by-cell
UMI count matrix.

Seurat v3.0.0 (7, 8) was used for all subsequent analysis. First, a series of qual-
ity filters was applied to the data to remove those barcodes which fell into any
one of these categories recommended by Seurat: too few total transcript counts
(<300); possible debris with too few genes expressed (<200) and too few UMIs
(<1,000); possible more than one cell with too many genes expressed (>50,000)
and too many UMIs (>10,000); possible dead cell or a sign of cellular stress and
apoptosis with too high proportion of mitochondrial gene expression over the
total transcript counts (>20%). Finally, predicted doublets were also removed
using scrublet V0.2.3.

We constructed a Seurat object using the unfiltered feature-barcode matrix for
each sample. Each sample was scaled and normalized using Seurat’s “SCTrans-
form” function to correct for batch effects (with parameters: vars.to.regress =

c("nCount_RNA", "percent.mito"), return.only.var.genes = F).

scRNA-seq Cell Type Annotation

Cell types were assigned to each cluster by manually reviewing the expres-
sion of marker genes. The marker genes for main cell types were CD79A,
CD79B, MS4A1 (B cells); CD8A, CD8B, CD7, CD3E (CD8™ T cells); CD4, IL7R,
CD7, CD3E (CD4™ T cells); NKG7, GNLY, KLRDI, NCAMI (NK cells); MZBI,
SDCI, IGHGI (Plasma cells); CLEC4C, IL3RA, IRF8, GZMB (Dendritic cells);
FCGR3A (Macrophages); CDI4, LYZ, SI00A8, SI00A9 (Monocytes); AZUI,
ELANE, MPO (Neutrophils); COLIAI, COL3Al, TNC, S100A4 (Fibroblasts);
and AHSPI, HBA, HBB (Erythrocytes). Detailed cell type markers are listed in
Supplementary Table S1A. All cells that were labeled as erythrocytes and plasma

cells were removed from subsequent analysis.

AACRJournals.org

Examining the MM TME with Complementary Single-cell Methods

Processing of BMMC From MMRF CoMMpass Study for
CITE-seq

Samples were thawed in the water bath at 37°C for 2-3 minutes and the cell
concentration, viability were determined using a Bio-Rad T20 Cell Counter
(catalog no. 145-0102). Samples were blocked by incubation with TruStain fcX
(BioLegend, catalog no. 422301) in a 50 pL cell labeling buffer. Next, sam-
ples were labeled with Total-seq antibodies (BioLegend; Supplementary Table
SIB) for 30 minutes. Cells were washed and resuspended to obtain a cell con-
centration of 700-1,200 cells/iwL and gently pipette mix using a regular-bore
pipette tip until a single-cell suspension is achieved. We then proceed immedi-
ately to Single-Cell Gene Expression Library (3’ GEX) construction using 10X
Chromium Single-Cell 3’ Reagent Kits v3 (catalog no. 1000075) and Chromium
i7 Sample Index Plate with Barcoding technology for Cell Surface Protein. For
each sample, 5,000 cells were injected for CITE-seq. The libraries were se-
quenced on NovaSeq S4 platform in pair end sequencing and a single index

with at least 50,000 read pairs per cell.

CITE-seq Data Quantification Preprocessing

We used Cell Ranger to demultiplex, map to the human reference genome
(grch38), and count UMIs in the mRNA libraries, and CITE-seq-Count to
count UMIs in the antibody-derived tag (ADT) libraries. We filtered out cells
with more than 10% UMIs from mitochondrially encoded genes or less than
1,200 mRNA UMIs in total. We then constructed a Seurat object using the
feature-barcode matrix for each sample (Seurat v3.0.0). Each sample was scaled
and normalized using Seurat’s “SCTransform” function to correct for batch
effects (with parameters: vars.to.regress = c("nCount_RNA", "percent.mito"),
return.only.var.genes = F). Next, the protein expression levels were added to

the Seurat object, followed by normalization and scaling for ADT assay.

CITE-seq Data Multimodal Integration and Cell
Type Annotation

Using Citefuse v1.2.0, expression was normalized by function normaliseEx-
prs(sce, altExp_name = "ADT", transform = "log"). We then integrated RNA
and ADT matrix by an integration algorithm called similarity network fusion
(SNF) and clustered cells by Louvain clustering. Then, cell types were assigned
to each cluster by manually reviewing the expression of marker genes at RNA
levels (same as scRNA-seq; Supplementary Table S1A) and ADT levels (if avail-
able). All cells that were labeled as erythrocytes and plasma cells were removed

from subsequent analysis.

Processing of BMMC From MMRF CoMMpass Study for
CyTOF at Icahn School of Medicine at Mount Sinai

BMMC aliquots were thawed in a 37°C water bath and immediately transferred
into RPMI + 10% FBS. Cells were pelleted by centrifugation at 300 x g for
5 minutes and all supernatant was removed. Cells were then incubated for 20
minutes in a 37°C water bath with Cell-ID Rh103 Intercalator (Fluidigm, cat-
alog no. 201103A) to label nonviable cells. Samples were then blocked with Fc
receptor blocking solution (BioLegend, catalog no. 422302) and stained with a
cocktail of surface antibodies for 30 minutes on ice. All antibodies were either
conjugated in-house using Fluidigm’s x 8 polymer conjugation kits or pur-
chased commercially from Fluidigm. Next, samples were fixed and barcoded
using Fluidigm’s 20-Plex Pd barcoding kit (catalog no. 201060) and pooled into
a single tube. The pooled sample was then fixed and permeabilized using BD’s
Cytofix/Cytoperm Fixation/Permeabilization Kit (catalog no. 554714), blocked

with heparin at a concentration of 100 U/mL to prevent nonspecific staining

Cancer Res Commun; 2(10) October 2022
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of eosinophils and stained with a cocktail of intracellular antibodies. Finally,
the sample was refixed with freshly diluted 2.4% formaldehyde in PBS contain-
ing 0.02% saponin and Cell-ID Intercalator-Ir (Fluidigm, catalog no. 201192A)
to label nucleated cells. The sample was then stored as a pellet in PBS until

acquisition.

Immediately prior to acquisition, the pooled sample was washed with Cell
Staining Buffer (CSB) and Cell Acquisition Solution (Fluidigm, catalog no.
201240) and resuspended in Cell Acquisition Solution at a concentration of
1 million cells per mL containing a 1:20 dilution of EQ normalization beads
(Fluidigm, catalog no. 201078). The sample was acquired on the Fluidigm He-
lios mass cytometer using the wide bore injector configuration at an acquisition

speed of < 400 cells per second.

Processing of BMMC From MMRF CoMMpass Study
for CyTOF at Mayo

BMMC aliquots were thawed in a 37°C water bath and immediately transferred
into 15mL tubes and slowly diluted with 10 mL of prewarmed RPMI + 10%
FBS+-25 U/mL Benzonase (Sigma-Aldrich; catalog no. E1014-5KU; 250 U/mL).
Cells were pelleted by centrifugation (all spins at 500 x g for 5 minutes) and su-
pernatant was removed. Cells were then incubated for 1 hour in a 37°C water
bath in 10 mL of RPMI+10% FBS. Cells were counted and 3-4 million cells
were aliquoted into microfuge 2 mL conical tubes, pelleted and washed 2x
with 2 mL CSB Maxpar Cell Staining Buffer (Fluidigm; catalog no. 201068; 500
mL) and resuspended in 300 pL of Cell-ID Cisplatin (Fluidigm; catalog no.:
201064) 5 minutes/RT, to label dead cells. Immediately quenched with 1.5 mL
CSB, pelleted, and washed with CSB 2x.

For staining, the cell pellet was gently resuspended in 50 L CSB and the addi-
tion of an equal volume of diluted surface antibody cocktail, for a final staining
volume 0f 100 L. The staining reaction was incubated on a rocker platform for
45 minutes at room temperature. A total of 1 mL of CSB was used to wash and
pellet the cells 2. Cell pellet was resuspended in the residual volume and then
gently resuspended in 500 pL of 1x PBS. An equal volume of 4% PFA in PBS
was added to fix cells for a minimum of 20 minutes at a final concentration of
2% PFA in PBS. The sample was labeled overnight at 4°C on a rocker platform
with Cell-ID Intercalator-Ir (Fluidigm, catalog no. 201192A) in Maxpar Fix and
Perm Buffer (Fluidigm; catalog no. 201067; 100 mL) to label nucleated cells.

The following day the sample was washed 1x with CSB (all cell pelleting per-
formed at 800 x g for 5 minutes after fixation) and twice with Cell Acquisition
Solution (Fluidigm, catalog no. 201240). Final resuspension was in Cell Ac-
quisition Solution at a concentration of 0.7 million cells per mL containing a
1:10 dilution of EQ normalization beads (Fluidigm, catalog no. 201078). The
sample was acquired on the Fluidigm Helios mass cytometer using the wide
bore injector configuration at a targeted acquisition speed of 300 events per
second. A cryopreserved specimen of 3-4 million Ficoll-enriched peripheral
blood mononuclear cell (PBMC) derived from a pool of 4 anonymous platelet
donors was included with every batch of MMRF samples (9). This sample was
treated and analyzed in parallel throughout the entire experiment as a process

control.

Processing of BMMC From MMRF CoMMpass Study for
CyTOF at Emory

BMMC aliquots were thawed in a 37°C water bath and immediately trans-
ferred into RPMI+10% FBS. Cells were pelleted by centrifugation at 300 x g

for 5 minutes and all supernatant was removed. Cells were then incubated for

Cancer Res Commun; 2(10) October 2022

20 minutes in a 37°C incubator. Cells were pelleted by centrifugation at 300 x
g for 5 minutes and all supernatant was removed. Cells were resuspended in
PBS and incubated with cisplatin for 1 minute (Fluidigm, catalog no. 201195)
to label nonviable cells. Samples were washed with Maxpar cell staining buffer
(Fluidigm, catalog no. 201068) and stained with a cocktail of surface antibod-
ies for 15 minutes at room temperature. All antibodies were either conjugated
in-house using Fluidigm’s X8 polymer conjugation kits or purchased commer-
cially from Fluidigm. Next, samples were washed and fixed and permed with TF
Fix/Perm and Perm/Wash Kit (BD Pharmigen, catalog nos. 51-9008100 and 51-
9008102) using manufacturer’s recommendations. Permeabilized samples were
incubated for 30 minutes in Perm/Wash with a cocktail of intracellular anti-
bodies. After washing and centrifugation at 800 x g for 5 minutes, the sample
was refixed with Maxpar Fix I buffer (Fluidigm, catalog no. 201065) and Cell-
ID Intercalator-Ir (Fluidigm, catalog no. 201192A) to label nucleated cells. The
sample was then stored as a pellet in PBS until acquisition. Immediately prior
to acquisition, the sample was washed with Cell Staining Buffer and Maxpar
Water (Fluidigm, catalog no. 201069) and resuspended in Maxpar Water at a
concentration of 1 million cells per mL containing a 1:10 dilution of EQ nor-
malization beads (Fluidigm, catalog no. 201078). The sample was acquired on
the Fluidigm Helios mass cytometer using the HT injector configuration at an
acquisition speed of <500 cells per second.

CyTOF Data Preprocessing

The resulting FCS files were normalized and concatenated using Fluidigm’s
CyTOF software and then demultiplexed using the Zunder lab single-cell de-
barocder (https://github.com/zunderlab/single- cell-debarcoder). The FCS files
were further cleaned on Cytobank by removing EQ beads, low DNA debris, and
gaussian multiplets. Barcoding multiplets were also removed on the basis of the
Mabhalanobis distance and barcode separation distance parameters provided by
the Zunder lab debarcoder.

CyTOF Cell Type Annotation and Expression
Normalization

Gating and data analysis were done using WUSTL Cytobank. Live, single cells
are selected by gating out cells/debris with outlier cisplatin and DNA interca-
lator staining. Cell populations were determined on the basis of gating of cell
type marker expression. Icahn School of Medicine at Mount Sinai (ISMMS):
CD31tCDI9~CD56-CD33~ (T cells); CD3~CD19~CD56~CD33~CDI123%
HLA_DR+CDIIc"™ [plasmacytoid dendritic cells (pDC)]; CD3~CDI19*
CD56~CD33™ (B cells); CD56TCD3~CDI9~CD33~ (NK cells); CD33*
CD3~CDI19~CD14" (monocytes); CD33tCD3~CD19~CDI14~CD16™
(macrophages). Mayo: CD3TCD19~ (T cells); CD3~ CDI19*CD56~ (B
cells); CD561CD3~CDI16"HLADR—/CD567CD3~CD16~CDI123~CDllc™
(NK cells); CD3~CD19~CD20~CDI14" (monocytes); CD3~CD19~CD20™
CDI14~CD16™ (macrophages); CD3~CD19~CD20~CD123" (pDC). Emory:
CD3%tCDI19~ (T cells); CD3~ CDI9" (B cells); CD3~CD19~CDI14" (mono-
cytes); CD37CD19-CD14-CD16" (macrophages). For T-cell subtypes,
ISMMS and Mayo used the same gating strategy: CD4TCD8~ (CD4* T
cells); CD8TCD4™~ (CD8™ T cells); CD4TCD8~CD257CDI127 [regulatory
T cell (Treg)]; CD45RATCCR7™ (naive T cells); CD45RATCCR7~ (EMRA
T cells); CD45RA™CCR7" (central memory T cells), CD45RA~CCR7~
(effector memory T cells), Emory: CD4TCD8~ (CD4% T cells); CD8TCD4~
(CD8T T cells); CD45RO™CCR7" (naive T cells). Next, we performed
t-SNE analysis for 18 samples from ISMMS. We used the scaled expression
of markers, including CD57, CDllc, Ki67, CD19, CD45RA, KLRGI, CD4,
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CD8, ICOS, CD16, CD127, CDlc, CD123, CD66b, TIGIT, TIM3, CD27, PD-L1,
CD33, CD14, CD56, NKG2A, CD5, CD45RO, NKG2D, CD25, CCR7, CD3,
Tbet, CD38, CD39, CD28, DNAMI, HLA-DR, PD-1, Granzyme B, CDlIb.
For expression normalization in CyTOF analysis, we followed instructions
from Cytobank and used transformed ratios itself compared with its con-
trol, which is the table’s minimum of median of channel (described here
https://support.cytobank.org/hc/en-us/articles/206147637- How- to- create-

and-configure-a- Heatmap).

Bland-Altman Analysis

R package Blandr (v0.5.3) was used to calculate mean difference and 95%
confidence interval (CI) in Bland-Altman analyses (10). Parameter sig.level =
0.95.

Differential Expression Analysis

Differential expression analysis was performed using the default test (Wilcoxon
rank-sum test) of function FindMarkers (from the Seurat package) with the
specified parameters: min.pct = 0.25, logfc.threshold = 0.25, and only.pos = T.

Data Availability Statement

The sequence data generated in this study have been submitted to the
NCBI BioProject database PRJNA765009 (https://www.ncbi.nlm.nih.gov/
bioproject/).

Results

Patient Characteristics and Overview of CD45" Immune
Cells Measured by scRNA-seq, CyTOF, and CITE-seq

We used 18 cryopreserved multiple myeloma samples of CDI38~ “im-
mune cell” fractions from patients enrolled in the MMRF CoMMpass study
(NCT01454297). Nine were fast progressors (FP, progressed within 6 months)
and nine were nonprogressors (NP, progressed >6 months but within 5 years)
with patient ages ranging from 37 to 83 years. Twelve patients were in the ISS
stage III, 8 underwent autologous stem cell transplantation (ASCT), 11 were fe-
males and 15 were Caucasians (Fig. 1A; Supplementary Table SIC). Each sample
was subjected to scRNA-seq, CyTOF, and CITE-seq at three different respective
academic research centers, namely WUSTL, ISMMS, and Beth Israel Deaconess
Medical Center (BIDMC). All sites received aliquots from the same sample and

technical replicates were conducted for two samples for each assay (Fig. 1A).

To assess immune cell composition of patients with multiple myeloma, bone
marrow (BM) baseline samples (collected at the initial diagnosis) from these
18 patients were subjected to scRNA-seq, with immune cells clustered on the
basis of their transcriptome profiles using the Louvain clustering algorithm im-
plemented by Seurat (refs. 7, 8; Fig. 1B). We then investigated immune cells of
these same samples by CyTOF using a 39-marker panel (Supplementary Table
SID). Cell populations were characterized by expression of markers, clustered
by the flowsom algorithm (11), and visualized with vi-SNE in the Cytobank
(12) platform (Fig. 1C). Given the discordance between RNA expression and
protein expression that is known to exist (13), it is informative to character-
ize cell populations by measuring RNA and protein at the same time. Finally,
we utilized CITE-seq with antibody-oligonucleotide conjugates and 29 pro-
tein markers (Supplementary Table SIB) to simultaneously quantify single-cell
transcriptomes and surface proteins. Following standard scRNA-seq quality
filtering protocols, immune cells were clustered on the basis of integrated multi-

omic profiles by the SNF integration algorithm in CiteFuse (ref. 14; Fig. 1D).
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From CD138~ BM aliquots, we detected, on average, 1,051 immune cells/sample
using scRNA-seq, >64K CD45™" cells/sample using CyTOF, and 718 immune
cells/sample using CITE-seq.

Advantages of CITE-seq in Distinguishing T-cell
Subtypes in Multiple Myeloma

To assess the potential advantages of simultaneous quantification of RNA
and protein expression in CITE-seq as compared with standard scRNA-seq,
we labeled immune cell identities determined by integrated transcriptome
and protein expression, but clustered cells by transcriptional profiles alone
(Fig. 1E). Interestingly, most cell types, including B cells, monocytes,
macrophages, neutrophils, and pDCs, formed distinct clusters, while T-cell sub-
types mixed together. To further understand the difference of cell type marker
expression between the RNA and protein levels, we visualized the expression of
some canonical markers in Uniform Manifold Approximation and Projection
(UMAP) and investigated the concordance of the sample-level average expres-
sion of the 29 CITE-seq protein markers between RNA level and ADT level
(Fig. 1F and G; Supplementary Fig. S1A). As expected, expression levels of mark-
ers are generally concordant (R = 0.72, P < 10~*), with some exceptions where
protein-level expression is higher than RNA-level expression and vice versa.
One impressive example is CD4 (Fig. 1F and G), which is highly expressed at
ADT measurement, but minimally expressed at the RNA level, mainly because
mRNAs are produced at much lower rates and have much shorter half-lives
than proteins (15). This observation is consistent with previous studies showing
low CD4 mRNA expression compared with surface CD4 protein (16). Finally,
because naive CD8™ T cells were clustered together with CD4* T cells based
on transcriptome profiles (Fig. 1E), we investigated whether reclustering T cells
alone could help to distinguish subtypes at the RNA level. Because the high
similarities of transcriptional profiles among T cells (16) and different surface
protein markers could be encoded by the same gene (17), reclustering CD4™
and naive CD8™ T cells did not provide additional resolution of T-cell subtypes
(Fig.1H). Consistent with a published study about renal T subtype identification
using CITE-seq (18), our observation emphasizes the advantage of integrat-
ing protein-level expression of cell type markers for multiple myeloma T-cell

subtype identification in CITE-seq as compared with standard scRNA-seq.

Data Reproducibility and Comparisons of Cell
Populations Measured by the Same Technologies
Across Different Centers

To examine data reproducibility, percentages of cell subsets in CD45" popula-
tions were compared between technical replicates for two samples in each assay.
The technical replicate pairs are strongly correlated in all three assays (average
Pearson correlation coefficient r = 0.94 in scRNA-seq, 0.89 in CyTOF, and 0.92
in CITE-seq; Supplementary Fig. SIB-SID). Next, to examine the consistency
of immune cell populations measured by the same techniques at different sites,
we evaluated the percentage of immune populations captured by three centers
using four samples. scRNA-seq data were generated in ISMMS, WUSTL, and
BIDMC using aliquots of the same samples and CyTOF data were generated in
ISMMS, Mayo Clinic, and Emory University (panels are shown in Supplemen-
tary Table SID-S1F). BIDMC scRNA-seq data are from CITE-seq data analyzed
with RNA signal alone (Supplementary Fig. SIE). We observed that the percent-
ages of B cells, pre-B cells, NK cells, pDCs, monocytes and macrophages are
generally consistent, while the T-cell subset varies across centers in sScRNA-seq
measurement (Supplementary Fig. SIF). This suggests that T-cell composi-

tion could vary by aliquots and potential sample processing differences across
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FIGURE 1 Overview of cell populations of 18 multiple myeloma patient samples subject to scRNA-seq, CyTOF, and CITE-seq. A, Patient
characteristics and single-cell data collection. FP and NP denote fast progressors and nonprogressors, respectively. ISS = International Staging System.
ASCT = Autologous Stem Cell Transplantation. B, UMAP projection of integrated scRNA-seq data, with cells colored by immune cell types. C, t-SNE
projection of integrated CyTOF data, with cells colored by immune cell types. D, UMAP projection of integrated CITE-seq data, with cells clustered by
integrated RNA and ADT expression, colored by immune cell types. E, UMAP projection of integrated CITE-seq data, with cells clustered by
transcriptional level alone, colored by immune cell identities from D. F, Comparison of canonical cell type marker gene expressions between protein
level (ADT, top) and transcriptional level (RNA, bottom). Cells are colored by normalized expression. G, Concordance of sample-level average
expressions of CITE-seq protein markers measured at RNA level and ADT level. The gray shaded area represents the 95% confidence interval around
the line of best fit. R = Pearson correlation coefficient. H, UMAP projection of CD4* T cells and naive CD8* T cells, which is the subset of integrated
data in E, with cells clustered by transcriptional level alone, colored by immune cell identities from D and E.
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centers while other cell types are more similar in scRNA-seq measurement. The
cell type abundance measured by CyTOF is less variable than that measured by
scRNA-seq, with smaller differences observed in T-cell subsets across centers
(Supplementary Fig. S1G, mean difference calculated by Bland-Altman analy-
sis, shown in Supplementary Table S1G). Moreover, cell subset abundances of
ISMMS samples tend to have less variation likely due to the benefit of barcod-
ing samples (Materials and Methods). The cell type frequencies calculated by
one center (Emory) tend to be lower overall compared with other centers in
CyTOF, probably because wide bore injector assembly with cell acquisition so-
lution was not used to maintain cell integrity (Materials and Methods). It is
worthwhile noting that including reference samples in CyTOF is very helpful
for identifying potential artifacts. For example, we observed a big proportion
of CD66b/CD3™ cells in patient samples while these were absent in the ref-
erence sample from a healthy donor (data not shown). We hypothesized that
this CD66b staining artifact (CD66b is not expressed on CD3" T cells) was
likely due to nonspecific staining from dead cells. Indeed, the percentage of
CD66b/CD3™ cells dropped dramatically after dead cell depletion. Finally, to
evaluate the similarity of expression profiles across different samples and cen-
ters, we calculated the Pearson correlation coefficient of expression of the B-cell
markers between populations detected from different centers using scRNA-seq
(Supplementary Fig. SIH). We observed that B cells clustered according to pa-
tients instead of centers, suggesting patient dependence of B-cell transcriptome
profiles, likely because B cells are potential reservoirs of plasma cells (19). Over-
all, we observed that cell type abundances are generally consistent across centers
for most cell types and that similarity of transcriptome profiles of immune pop-
ulations is center independent, suggesting absence of strong batch effects across
centers. These observations imply that our cross-technique comparisons should
be valid.

Comparisons of Cell Type Abundances and Correlations
of Cell Type Marker Expression Across the Three
Techniques

To evaluate the concordance of cell type composition determined by the three
methods, we calculated the cell subset frequency of each immune popula-
tion relative to the CD45% populations (Fig. 2A). Overall, all three approaches
were concordant, though there is somewhat stronger concordance between
scRNA-seq and CITE-seq for all cell types except NK cells (mean differ-
ence calculated by Bland-Altman analysis, shown in Supplementary Table
SIH). Cell type abundance is especially consistent for B cells, pDC, and neu-
trophils. Interestingly, the cell frequency decreased and increased for T cells and
macrophages/monocytes, respectively, in CyTOF as compared with scRNA-
seq and CITE-seq. The mean differences between CyTOF and CITE-seq were
—13.6% (95% CI: —24.02 to —3.11) for T cells and 11.07% (95% CI: 3.19-18.95) for
macrophages/monocytes. This finding is consistent with a previous study where
fewer T cells were detected in CyTOF compared with scRNA-seq in healthy
bone marrow samples (20). To further investigate which subpopulations were
discordant, the frequencies of T-cell subsets, monocytes, and macrophages were
evaluated (Fig. 2B, mean difference calculated by Bland-Altman analysis). In-
terestingly, CITE-seq detected far more CD4™ T cells compared with CyTOF
and scRNA-seq, while CyTOF detected far fewer CD8™ T cells compared with
the other two techniques. In terms of T-cell subtypes, Treg frequency increased
and memory CD8" T cells reduced in scRNA-seq, as compared with CyTOF.
In addition, scRNA-seq detected far more macrophages than the other two

methods, while monocyte frequency was the lowest in CyTOE
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To further evaluate concordance between scRNA-seq and CITE-seq, we exam-
ined expression of cell type marker genes, including both the RNA and ADT
levels. Average expressions of each marker gene at the transcriptional level (blue
dots) between scRNA-seq and CITE-seq are generally concordant (Fig. 2C). In
contrast, we observed drastic differences of some marker genes between RNA
and ADT expression in CITE-seq, probably due to the RNA dropout (21) and
shorter half-lives of mRNAs versus proteins (15). For example, expression of
CD4_adt is higher than that of transcriptional CD4, whereas CD127/IL7R tends
to be highly expressed at the transcriptional level. This dynamic explains why
IL7R is often differentially expressed in CD4™ T-cell population, while CD4 is
weakly expressed in scRNA-seq. Taken together, these observations highlight
the importance of choosing cell type marker genes best suited to particular

modalities.

We also correlated expressions of marker genes among scRNA-seq, CyTOF, and
CITE-seq. The vast majority are positively correlated in protein-protein com-
parison (Fig. 2D) and RNA-RNA comparison (Fig. 2E). Next, we investigated
the correlations of expressions of marker genes between the transcriptome and
protein levels (Fig. 2F and G; Supplementary Fig. S2A and S2B). As expected,
the overall correlation between different modalities is lower than that of the
same modalities. We observed significant correlation for some markers, includ-
ing CCR7 in CD4™ naive T cells, IL7R in CD4" memory T cells, and FCGR3A
in NK cells, between RNA and protein level of CITE-seq, while no markers
are significantly correlated between scRNA-seq and CyTOF (Fig. 2G). We also
found that FCGR3A in macrophages has a strong correlation, while some mark-
ers are significantly anticorrelated between CITE-seq transcriptional level and
CyTOF, such as CD3D, CD3G, IL7R, CD8A, etc. (Supplementary Fig. S2A-S2C;
Supplementary Table SII).

Decreased Ratio of CD4*/CD8* T Cells From ISS Stage 2
to ISS Stage 3 Patients and FP-related Gene Signatures

Furthermore, we sought to investigate the relationship between clinical features
and immune cell composition of patients with multiple myeloma by examining
the ratio of CD47/CD8™ T cells of patients at different disease stages. A previ-
ous study used flow cytometry to reveal that this ratio was significantly lower
in PBMC:s of patients with multiple myeloma as compared with that of normal
controls and the ratio decreased with the multiple myeloma progression (5). By
integrating three assays, we found the ratio tends to decrease from ISS stage 2
to ISS stage 3 patients (Fig. 3A). Furthermore, CITE-seq and CyTOF analyses
revealed significant downregulation of CD45RA in stage 3 patients, suggest-
ing that CD8™ T cells tend to be activated rather than naive in stage 3 patients
(Fig. 3B). In addition, we then identified several differentially expressed genes
(DEG) of NK cells from FPs relative to NPs, including ARPC5, XAF1, RAC2,
and PSMBY, as revealed by both scRNA-seq and CITE-seq assays (Fig. 3C).
ARPCS5, actin-related protein 2/3 complex subunit 5, has been revealed to be
highly expressed in patients with poor overall survival and could be treated as
an independent biomarker for patients with multiple myeloma (22), consistent
with our observations. A previous microarray-based study found that RAC2,
Rac family small GTPase 2, is significantly upregulated in multiple myeloma as
compared with MGUS (23). One subunit of the proteasome (PSMB9), was re-
markably highly expressed in cell groups with t(4;14) translocations versus cells
from MGUS (24). In summary, previous studies indicated RAC2 and PSMB9 are
associated with disease development from MGUS to multiple myeloma and our
analysis suggested that they might also be related to multiple myeloma progres-
sion. Taken together, we observed the ratio of CD41 T/CD8™ T cells decreased
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FIGURE 2 Comparison of cell subset frequencies and correlations of expression of canonical cell type markers across different modalities. A, Main
immune cell population (CD45%) frequencies observed by CITE-seq, CyTOF, and scRNA-seq. Each boxplot is colored by assay. CITE-seq populations
are determined on the basis of integrated RNA and ADT expressions. B, Immune cell subtype frequencies for CITE-seq, CyTOF, and scRNA-seq. Each
boxplot is colored by assay. CITE-seq populations are determined on the basis of integrated RNA and ADT (Continued on the following page.)
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(Continued) expressions. €, Concordance of sample-level average expressions of canonical cell type markers in main cell subsets between scRNA-seq
and CITE-seq. CITE-seq RNA and protein (ADT) level expressions are represented by blue and red dots, respectively. D, Spearman correlation
coefficients of protein level expressions of cell type markers between CyTOF and CITE-seq. Each dot represents a marker gene and the color of the dot
represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. E, Spearman correlation coefficients of
transcriptional level expressions of cell type markers between scRNA-seq and CITE-seq. Each dot represents a marker gene and the color of the dot
represents the p value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. F, Spearman correlation coefficients of
cell type markers between transcriptional level and protein level expressions in CITE-seq. Each dot represents a marker gene and the color of the dot
represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05. G, Spearman correlation coefficients of
cell type markers between transcriptional level expressions from scRNA-seq and protein level expressions from CyTOF. Each dot represents a marker
gene and the color of the dot represents the P value of correlation. Markers are highlighted with an outer circle if the P value is less than 0.05.

in stage 3 patients relative to stage 2 patients, suggesting an increased popula-
tion of CD8™ T cells in bone marrow microenvironment (BMME) of patients
in stage 3. We also found that RAC2 and PSMBY are upregulated in NK cells
in FPs relative to NPs at transcriptional level, which could potentially serve as

multiple myeloma progression markers.

Discussion

Single-cell sequencing technologies have been widely used in studying tissue

heterogeneity, tumorigenesis, and metastasis given their advantages of being

able to depict genome, transcriptome, proteome, and other mutli-omics profiles
of single cells (25). However, the similarities of measurements across the vari-
ous single-cell techniques remain to be fully elucidated. Herein, we integrated
scRNA-seq, CyTOEF, and CITE-seq to perform a detailed comparison of their
measurements for multiple myeloma BMME. From CD138~ BM aliquots of 20
samples from 18 patients, we detected, on average, 1,051 immune cells/sample
using scRNA-seq, >64K CD45" cells/sample using CyTOF, and 718 immune
cells/sample using CITE-seq. By clustering cells with or without protein pro-
files in CITE-seq, we showed the advantages of multimodal measurement over

transcriptional measurement alone of cell type markers when characterizing
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FIGURE 3 Ratio of CD4* T/CD8* T of patients in different ISS stages and markers associated with ISS disease stages and multiple myeloma
progression. A, Violin plots showing the ratio of CD4* T/CD8* T of patients in ISS stage 2 and 3 in scRNA-seq, CyTOF, and CITE-seq. Horizontal lines
indicate the median of data points in each group. B, Violin plots showing single cell-level normalized expression of CD45RA in CITE-seq ADT
measurement and CyTOF. The difference is significant at P < 0.0001 based on Wilcoxon rank-sum test. C, Heatmaps showing DEGs of NK cells of FP
versus NP patients in CITE-seq RNA measurement (left) and scRNA-seq measurement (right). The samples are ordered on the basis of hierarchical
clustering of expression profiles of these genes in CITE-seq RNA measurement. Expression values are scaled such that for each gene, the average of
the scaled expression is 0 and the SD is 1. Adjusted P values and log fold change in CITE-seq and scRNA-seq were shown on the left and right side of
DEGs, respectively. FC = fold change.
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T-cell subtypes in MM (Fig. 1IE-H). This observation is in line with a study to
investigate renal T-cell subtypes by CITE-seq (18).

Next, to examine the consistency of cell populations measured by the same
techniques at different sites, we evaluated the cell subset abundances captured
by three centers using four samples. Cross-center comparisons (Supplemen-
tary Fig. SIF and S1G) suggested no strong batch effect across centers and there
are some important factors to consider to obtain reproducible and reliable re-
sults: (i) It is important to include reference samples in CyTOF to help identify
marker nonspecific staining artifacts; (ii) Barcoding samples, sample delivery
mechanism, and using lyophilized panels is important in CyTOF experiments.
Furthermore, cross-technique comparisons revealed that the percentages of
immune populations measured by scRNA-seq, CyTOE, and CITE-seq are
generally concordant, except some variations in T cells, macrophages, and
monocytes (Fig. 2A and B). Analysis revealed relatively high correlations of
most markers between the same modalities, though some markers are nega-
tively correlated. (Fig. 2C-G). This observation highlighted the importance of

choosing marker genes best suited to particular modalities.

Previous studies have found patients with multiple myeloma have lower CD4™
T/CD8™" T ratios relative to healthy donors and these ratios are further de-
creased in ISS stage 3 versus ISS stage 1 patients (5). Here, we confirmed this
trend using three single-cell technologies, finding that this ratio tends to de-
crease even in stage 3 versus stage 2 patients (Fig. 3A). We also observed the
decreased ratio in stage 2 compared with stage 1 patients based on CyTOF
and CITE-seq measurement but not in scRNA-seq, probably due to the lim-
ited number of patients in stage 1. Future study could further investigate how
immune cell composition changes along with ISS stages with expanded sam-
ple size. In addition, we observed upregulation of ARPC5, XAFI, RAC2, and
PSMBY in NK cells of FPs compared with those of NPs, as suggested by both
scRNA-seq and CITE-seq RNA measurements (Fig. 3C). RAC2 and PSMB9
have been revealed to be associated with disease development from MGUS to
multiple myeloma (23, 24) and our analysis suggested that they might also be
related to multiple myeloma rapid progression, supported by both scRNA-seq
and CITE-seq. Because of the limited number of protein markers in CITE-
seq, we were unable to evaluate the protein-level expression of these multiple
myeloma progression-related genes identified from RNA measurement, which
requires further validation. It would also be interesting to investigate multiple
myeloma progression-related markers after controlling for treatments in future

studies.

This analysis is just a small sampling of the larger work being conducted by the
MMREF and their associated academic research centers to provide a sufficiently
broad, deep, and technologically diverse vast dataset for accurately character-
izing BMME and to help interrogate multiple myeloma TME using different
single-cell technologies. We hope this study will help researchers refine cell
population characterization strategies and provide insights to those considering
integrating multiple single-cell methods to comprehensively address biological

questions.

Authors’ Disclosures

S.K. Kumar reports other from Abbvie, Amgen, BMS, Janssen, Roche-
Genentech, Takeda, AstraZeneca, Bluebird Bio, Epizyme, Secura Biotherapeu-

Cancer Res Commun; 2(10) October 2022

tics, Monterosa therapeutics, Trillium, Loxo Oncology, K36, Sanofi, ArcellX;
personal fees from ncopeptides, Beigene, Antengene, GLH Pharma; and grants
from Abbvie, Amgen, Allogene, AstraZeneca, BMS, Carsgen, GSK, Janssen,
Novartis, Roche-Genentech, Takeda, Regeneron, Molecular Templates outside
the submitted work. H.J. Cho reports other from The Multiple Myeloma Re-
search Foundation during the conduct of the study; grants from BMS and
Takeda outside the submitted work. A.H. Rahman reports grants from Multi-
ple Myeloma Research Foundation during the conduct of the study; grants from
Celgene/BMS and personal fees from Fluidigm outside the submitted work. D.
Avigan reports other from BMS, Chugai, Sanofi, Merk, and Paraexel; and grants
from MMREF outside the submitted work. S. Gnjatic reports grants from Multi-
ple Myeloma Research Foundation during the conduct of the study; grants from
Regeneron, Boehringer Ingelheim, BMS, Genentech, Jannsen R&D, Takeda,
and EMD Serono outside the submitted work. No disclosures were reported

by the other authors.

Authors’ Contributions

L. Yao: Software, formal analysis, investigation, visualization, writing-original
draft, writing-review and editing. R.G. Jayasinghe: Resources, data cura-
tion. B. Lee: Data curation, formal analysis. S.S. Bhasin: Data curation,
formal analysis. W. Pilcher: Software, formal analysis. D.B. Doxie: Soft-
ware, formal analysis. E. Gonzalez-Kozlova: Software, formal analysis. S.
Dasari: Supervision. M.A. Fiala: Software, formal analysis. Y. Pita-Juarez:
Methodology. M. Strausbauch: Software, formal analysis. G. Kelly: Soft-
ware, formal analysis. B.E. Thomas: Software, formal analysis. S.K. Kumar:
Software, formal analysis. H.J. Cho: Investigation. E. Anderson: Software,
formal analysis. M.C. Wendl: Writing-review and editing. T. Dawson: Soft-
ware, formal analysis. D. D’souza: Software, formal analysis. S.T. Oh:
Supervision. G. Cheloni: Data curation. Y. Li: Investigation. J.F. DiPersio:
Supervision. A.H. Rahman: Supervision. K.M. Dhodapkar: Supervision. S.
Kim-Schulze: Supervision. R. Vij: Supervision. LS. Vlachos: Supervision.
S. Mehr: Project administration. M. Hamilton: Project administration. D.
Auclair: Supervision. T. Kourelis: Software, formal analysis. D. Avigan: Super-
vision. M.V. Dhodapkar: Supervision. S. Gnjatic: Supervision. M.K. Bhasin:
Supervision. L. Ding: Conceptualization, supervision, writing-review and

editing.

Acknowledgments

This study was funded through the MMRF Immune Atlas initiative. We thank
the patients with multiple myeloma, families, and professionals who have con-
tributed to this study. We thank Upadhyaya Bhaskar, Nicolas Fernandez, and
Laura Walker for their contribution to the initial work of MMRF immune atlas

pilot study. We thank John Leech for administrative support.

Note

Supplementary data for this article are available at Cancer Research Comm-

unications Online (https://aacrjournals.org/cancerrescommun/).

Received January 18, 2022; revised June 09, 2022; accepted August 19, 2022;
published first October 25, 2022.

https://doi.org/10.1158/2767-9764.CRC-22-0022 | CANCER RESEARCH COMMUNICATIONS

€202 AINF 91 uo Jasn sINoT 18 Alsieaun uolbulysep Aq 1pd-zz00-22-019/22.¥8ZE/SSZ1/0L/Z/pd-8joIle/unwiwoosaleoued/Bio sjeuinofioee/:dpy woly pepeojumoq


https://aacrjournals.org/cancerrescommun/

References

1.

Liu R, Gao Q, Foltz SM, Fowles JS, Yao L, Wang JT, et al. Co-evolution of tu-
mor and immune cells during progression of multiple myeloma. Nat Commun
2021;12: 2559.

. Zavidij O, Haradhvala NJ, Mouhieddine TH, Sklavenitis-Pistofidis R, Cai S,

Reidy M, et al. Single-cell RNA sequencing reveals compromised immune mi-
croenvironment in precursor stages of multiple myeloma. Nat Cancer 2020;1:
493-506.

. Adams HC 3rd, Stevenaert F, Krejcik J, Van der Borght K, Smets T, Bald

J, et al. High-parameter mass cytometry evaluation of relapsed/refractory
multiple myeloma patients treated with daratumumab demonstrates immune
modulation as a novel mechanism of action. Cytometry A 2019;95: 279-89.

. Redoglia V, Boccadoro M, Battaglio S, Dianzani U, Massaia M, Pileri A. Multiple

myeloma: altered CD4/CDS8 ratio in bone marrow. Haematologica 1990;75: 129-
31

. Koike M, Sekigawa |, Okada M, Matsumoto M, lida N, Hashimoto H, et al. Rela-

tionship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple
myeloma: reference to IL-16. Leuk Res 2002;26: 705-11.

. Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P,

Willenbacher E, et al. T cells in multiple myeloma display features of exhaustion
and senescence at the tumor site. J Hematol Oncol 2016;9: 116.

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol 2018;36: 411-20.

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biol
2019;20: 296.

Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC, et al. A
novel source of viable peripheral blood mononuclear cells from leukoreduction
system chambers. Transfusion 2006;46: 2083-9.

Bland JM, Altman DG. Statistical methods for assessing agreement between
two methods of clinical measurement. Lancet 1986;1: 307-10.

. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P,

Dhaene T, et al. FlowSOM: using self-organizing maps for visualization and
interpretation of cytometry data. Cytometry A 2015;87: 636-45.

Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow
cytometry experiments. Curr Protoc Cytom 2010;Chapter 10:Unit10.17.

AACRJournals.org

20.

21.

22.

23

24.

25.

Examining the MM TME with Complementary Single-cell Methods

Vogel C, Marcotte EM. Insights into the regulation of protein abundance
from proteomic and transcriptomic analyses. Nat Rev Genet 2012;13: 227-
32.

Kim HJ, Lin Y, Geddes TA, Yang JYH, Yang P. CiteFuse enables multi-modal
analysis of CITE-seq data. Bioinformatics 2020;36: 4137-43.

Schwanhdusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global
quantification of mammalian gene expression control. Nature 2011;473: 337-
42.

Ding J, Smith SL, Orozco G, Barton A, Eyre S, Martin P. Characterisation of CD4-+
T-cell subtypes using single cell RNA sequencing and the impact of cell number
and sequencing depth. Sci Rep 2020;10: 19825.

Ntranos V, Yi L, Melsted P, Pachter L. A discriminative learning approach to
differential expression analysis for single-cell RNA-seq. Nat Methods 2019;16:
163-6.

Krebs CF, Reimers D, Zhao Y, Paust H-J, Bartsch P, Nufiez S, et al. Pathogen-
induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune
kidney disease. Sci Immunol 2020;5: eaba4163.

Calame KL. Plasma cells: finding new light at the end of B cell development. Nat
Immunol 2001;2: 1103-8.

Oetjen KA, Lindblad KE, Goswami M, Gui G, Dagur PK, Lai C, et al. Human bone
marrow assessment by single-cell RNA sequencing, mass cytometry, and flow
cytometry. JCI Insight 2018;3: €124928.

Qiu P. Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun
2020;11: 1169.

Xiong T, Luo Z. The expression of actin-related protein 2/3 complex subunit 5
(ARPC5) expression in multiple myeloma and its prognostic significance. Med
Sci Monit 2018;24: 6340-8.

Liu Z, Huang J, Zhong Q, She Y, Ou R, Li C, et al. Network-based analysis of the
molecular mechanisms of multiple myeloma and monoclonal gammopathy of
undetermined significance. Oncol Lett 2017;14: 4167-75.

Jang JS, LiY, Mitra AK, Bi L, Abyzov A, van Wijnen AJ, et al. Molecular signatures
of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J
2019;9: 2

Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new
developments and medical applications. Cell Biosci 2019;9: 53.

Cancer Res Commun; 2(10) October 2022

€202 AINF 91 uo Jasn sINoT 18 Alsieaun uolbulysep Aq 1pd-zz00-22-019/22.¥8ZE/SSZ1/0L/Z/pd-8joIle/unwiwoosaleoued/Bio sjeuinofioee/:dpy woly pepeojumoq

1265



	Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis
	Please let us know how this document benefits you.
	Recommended Citation
	Authors

	tmp.1689531729.pdf.x4JsW

