11 research outputs found

    Milk Fat Globule Membrane (MFGM): An Ingredient of Dairy Products as Nutraceutical

    Get PDF
    Over the recent couple of years, milk fat globule membrane perceived a considerable attention due to its complexity in structure and health beneficial properties. This chapter describes the complex structure of the milk fat globule membrane as potential ingredient of dairy products as nutraceutical. The structure and function of milk fat globule membrane proteins are significant markers of the dietary nature of milk which might be ensnared in an assortment of medical advantages. Utilization of MFGM as nutraceutical depends upon its chemical composition, modifications introduced during processing and individual specific prepared food products. The MFGM and its associated proteins are involved in energy production, signal transduction, metabolic process regulation, cell to cell communication, and boost up immune system. This cross examination gives more bits of knowledge into the dynamic organization of human MFGM proteins, which thus will improve our comprehension of the physiological noteworthiness of MFGM proteins. We present the summary of the advances of research and functions of membrane and its associated proteins that are relevant to health and wellness. Milk fat globule membrane (MFGM) has attained a greater consideration as a potential source of nutraceutical with regards to its lipid-soluble vitamins, phospholipids and essential fatty acids. HIGHLIGHTS•Milk fat globule membrane is a complex biological membrane of lipid-protein, surrounded by the minute fat globules.•MFGM holds a great potential as nutraceutical with health beneficial properties.•Functionally important bioactivities associated with milk fat globule membrane protein include immune-stimulating, antimicrobial and antiviral properties.•MFGM proteins plays a role in a protection against colon cancer and gastrointestinal stress

    Identifying Anti-Oxidant Biosynthesis Genes in Pearl Millet [Pennisetum glaucum (L.) R. Br.] Using Genome—Wide Association Analysis

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R Br.] is an important staple food crop in the semi-arid tropics of Asia and Africa. It is a cereal grain that has the prospect to be used as a substitute for wheat flour for celiac patients. It is an important antioxidant food resource present with a wide range of phenolic compounds that are good sources of natural antioxidants. The present study aimed to identify the total antioxidant content of pearl millet flour and apply it to evaluate the antioxidant activity of its 222 genotypes drawn randomly from the pearl millet inbred germplasm association panel (PMiGAP), a world diversity panel of this crop. The total phenolic content (TPC) significantly correlated with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity (% inhibition), which ranged from 2.32 to 112.45% and ferric-reducing antioxidant power (FRAP) activity ranging from 21.68 to 179.66 (mg ascorbic acid eq./100 g). Genome-wide association studies (GWAS) were conducted using 222 diverse accessions and 67 K SNPs distributed across all the seven pearl millet chromosomes. Approximately, 218 SNPs were found to be strongly associated with DPPH and FRAP activity at high confidence [–log (p) > 3.0–7.4]. Furthermore, flanking regions of significantly associated SNPs were explored for candidate gene harvesting. This identified 18 candidate genes related to antioxidant pathway genes (flavanone 7-O-beta-glycosyltransferase, GDSL esterase/lipase, glutathione S-transferase) residing within or near the association signal that can be selected for further functional characterization. Patterns of genetic variability and the associated genes reported in this study are useful findings, which would need further validation before their utilization in molecular breeding for high antioxidant-containing pearl millet cultivars

    Genome wide association analysis for grain micronutrients and anti-nutritional traits in mungbean [Vigna radiata (L.) R. Wilczek] using SNP markers

    Get PDF
    Mungbean is an important food grain legume for human nutrition and nutritional food due to its nutrient-dense seed, liked palatability, and high digestibility. However, anti-nutritional factors pose a significant risk to improving nutritional quality for bio fortification. In the present study, genetic architecture of grain micronutrients (grain iron and zinc concentration) and anti-nutritional factors (grain phytic acid and tannin content) in association mapping panel of 145 diverse mungbean were evaluated. Based on all four parameters genotypes PUSA 1333 and IPM 02-19 were observed as desired genotypes as they had high grain iron and zinc concentration but low grain phytic acid and tannin content. The next generation sequencing (NGS)-based genotyping by sequencing (GBS) identified 14,447 genome-wide SNPs in a diverse selected panel of 127 mungbean genotypes. Population admixture analysis revealed the presence of four different ancestries among the genotypes and LD decay of ∼57.6 kb kb physical distance was noted in mungbean chromosomes. Association mapping analysis revealed that a total of 20 significant SNPs were shared by both GLM and Blink models associated with grain micronutrient and anti-nutritional factor traits, with Blink model identifying 35 putative SNPs. Further, this study identified the 185 putative candidate genes. Including potential candidate genes Vradi07g30190, Vradi01g09630, and Vradi09g05450 were found to be associated with grain iron concentration, Vradi10g04830 with grain zinc concentration, Vradi08g09870 and Vradi01g11110 with grain phytic acid content and Vradi04g11580 and Vradi06g15090 with grain tannin content. Moreover, two genes Vradi07g15310 and Vradi09g05480 showed significant variation in protein structure between native and mutated versions. The identified SNPs and candidate genes are potential powerful tools to provide the essential information for genetic studies and marker-assisted breeding program for nutritional improvement in mungbean

    Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains

    No full text
    Among cereals, sorghum, a gluten-free cereal is a rich source of bioactive polyphenols and dietary antioxidants. Sorghum polyphenolic compounds were characterized and quantified in five sorghum genotypes by high performance liquid chromatography. Grain samples of five sorghum genotypes were grounded and subjected top extraction for profile of polyphenols via High Performance Liquid Chromotography. Results showed that red and brown pericarp genotypes had higher total proanthocyanidin and total phenolic content, therefore, resulting in overall high antioxidant activities. The phenolic acids that showed the higher antioxidant activity in red (SSG 59-3) and brown (G-46) genotypes were caffeic acid, taxifolin and apigeninidin. SSG 59-3 (20.55 ± 0.11a, 45.66 ± 0.23b, 15.34 ± 0.10c) had higher antioxidant activity evaluated by DPPH, ABTS and FRAP assay. The concentrations of the sorghum-specific 3-deoxyanthocyanidins luteolinidin and apigeninidin were higher in red sorghum. Correlation analysis showed that antioxidant activity had a linear relationship with their polyphenols. Thus, our findings indicated that there is cumulative effect of both high antioxidant activity and phenolic compounds which may be exploited for human food to improve the nutritional value and health properties

    Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life

    No full text
    The guava (Psidium guajava L.), known as ‘Apple of the Tropics’ is a rich source of polyphenols, pectin, dietary fiber, and carotenoids. Guava comes under climacteric types of fruits; due to its high transpiration and respiration rate it experiences high post-harvest losses. Giloy leaf and ajwain seed herbal extracts-based nano-formulations (NFs) were synthesized using biopolymer sodium alginate and CaCl2, viz., T1 (Alginate: CaCl2), T2 (Alginate: CaCl2: Ajwain extract), and T3 (Alginate: CaCl2: Giloy extract). Antibacterial and antioxidant activity of the NFs were examined to check their efficacy as antibacterial agents, which was checked against E. coli, P. aeruginosa and B. cereus bacterial culture. The zone of inhibition against bacteria ranged from 6 ± 0.42 mm to 14 ± 0.92 mm. Antioxidant activity was 93.27%, 71.67%, and 67.04% for T2, T3 and T1 NFs and 89.90% and 67.05% for ajwain and giloy extracts. NFs treated fruits showed minimum loss in physiological weight, firmness, and color change compared to control fruit (uncoated). Physiological loss in weight ranged from 3.16 to 17.21% and 3.23 to 15.57% and fruit firmness ranged from 4.47 to 8.41 kg/cm2 and 4.84 to 8.37 kg/cm2 during storage at 25 ± 2 °C (incubation) and 32 ± 2 °C (room temperature), respectively. Among NFs, T2 showed the best results in preventing ripening and maximum loss of quality was observed in control (uncoated) fruits. Thus, NFs are an effective method of extending the shelf-life of fruits and ajwain based NFs increased shelf life of guava from 4–5 days to 7–8 days. Fruits storage at 25 ± 2 °C showed better results compared to storage at 32 ± 2 °C. Thus, NFs treated fruits storage at lower temperature controls the ripening related changes maximally

    Ascorbate–Glutathione Oxidant Scavengers, Metabolome Analysis and Adaptation Mechanisms of Ion Exclusion in Sorghum under Salt Stress

    No full text
    Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions

    Development and Optimization of Label-Free Quantitative Proteomics under Different Crossing Periods of Bottle Gourd

    Get PDF
    Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins’ electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source–sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs

    Investigating Mineral Accumulation and Seed Vigor Potential in Bottle Gourd (<i>Lagenaria siceraria</i>) through Crossbreeding Timing

    No full text
    Bottle gourd (Lagenaria siceraria) is a well-known cucurbit with an active functional ingredient. A two-year field experiment was carried out at the Research Farm of Seed Science and Technology, CCS HAU, Hisar, in a randomized block design during the Kharif season (Kharif is one of the two major cropping seasons in India and other South Asian countries, heavily reliant on monsoon rains with the other being Rabi) and the summer season. Five different crossing periods (CP), viz. CP1, CP2, CP3, CP4, and CP5, were considered to illustrate the effects of agro-climatic conditions on the quality and biochemical components of two bottle gourd parental lines and one hybrid, HBGH-35. The average mean temperature for the Kharif season in 2017 was 31.7 °C, and for the summer season, it was 40.1 °C. Flowers were tagged weekly from the start of the crossing period until the end and harvested separately at different times. The fruits harvested from different crossing periods under different environmental conditions influenced the bottle gourd’s qualitative and biochemical traits and showed significant variations among the five crossing period environments. A positive significance and correlation were observed between weather variables and different biochemical characteristics. Henceforth, the CP4 crossing period at a temperature of 31.7 °C retained high-quality seed development, which may be essential in enhancing agricultural productivity and the national economy

    Deciphering Reserve Mobilization, Antioxidant Potential, and Expression Analysis of Starch Synthesis in Sorghum Seedlings under Salt Stress

    No full text
    Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≤ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl−, and SO42− increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils
    corecore