93 research outputs found

    Signal transduction systems of mycobacteria with special reference to M. tuberculosis

    Get PDF
    Two-component systems and eukaryotic-like Ser/Thr protein kinases comprise major components of the signal transduction machinery of Mycobacterium tuberculosis. The elucidation of its genome sequence provided a tremendous fillip to their study. Multiple approaches embracing bioinformatics, genetics, biochemistry, cell and molecular biology and animal models are being used to characterize them and to decipher their role in the pathobiology of M. tuberculosis. Several response regulator proteins have been implicated in the survival, multiplication and persistence of M. tuberculosis in animals and cell models of virulence. Six additional mycobacterial genome sequencing projects are at advanced stages of completion. Bioinformatics tools have revealed that the two-component systems, eukaryotic-like Ser/Thr protein kinases and phosphatases are conserved to varying extents in different mycobacteria. This information will provide a jumpstart to their functional analysis. One of the best understood systems among the signal transduction proteins is the DevR-DevS two-component system. Studies from several laboratories have contributed to our present understanding of its role in the hypoxia response of pathogenic and non pathogenic mycobacteria. The current status of our knowledge of this and other signal transduction systems in mycobacteria is the subject of this review

    Determinants Outside the DevR C-Terminal Domain Are Essential for Cooperativity and Robust Activation of Dormancy Genes in Mycobacterium tuberculosis

    Get PDF
    Background: DevR (also called as DosR) is a two-domain response regulator of the NarL subfamily that controls dormancy adaptation of Mycobacterium tuberculosis (M. tb). In response to inducing signals such as hypoxia and ascorbic acid, the N-terminal receiver domain of DevR (DevRN) is phosphorylated at Asp54. This results in DevR binding to DNA via its C-terminal domain (DevRC) and subsequent induction of the DevR regulon. The mechanism of phosphorylation-mediated activation is not known. The present study was designed to understand the role of the N- and C-terminal domains of DevR in DevR regulon genes activation. Methodology/Principal Findings: Towards deciphering the activation mechanism of DevR, we compared the DNA binding properties of DevRC and DevR and correlated the findings with their ability to activate gene expression. We show that isolated DevRC can interact with DNA, but only with the high affinity site of a representative target promoter. Therefore, one role of DevR N is to mask the intrinsic DNA binding function of DevR C. However, unlike phosphorylated DevR, isolated DevR C does not interact with the adjacent low affinity binding site suggesting that a second role of DevRN is in cooperative binding to the secondary site. Transcriptional analysis shows that consistent with unmasking of its DNA binding property, DevRC supports the aerobic induction, albeit feebly, of DevR regulon genes but is unable to sustain gene activation during hypoxia

    Lysis of tubercle bacilli in fresh and stored sputum specimens: implications for diagnosing tuberculosis in stored and paucibacillary specimens by PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleic acid amplification techniques are being used increasingly in diagnosing tuberculosis. In developing countries clinical samples are often stored for subsequent analysis since molecular tests are conducted at only a limited number of laboratories. This study was conducted to assess the speed at which mycobacteria undergo autolysis and free DNA is detected in the supernatant during low-temperature storage.</p> <p>Results</p> <p>Eighty-seven smear positive sputa from tuberculosis patients were analysed immediately and after storage at -20°C. Timelines of 1 and 2 months were selected to assess the maximum extent of DNA loss that occurred during storage. All samples remained PCR- and smear-positive at 1 month and only 1 sample turned negative after 2 months. Bacterial lysis in the specimens was demonstrated by PCR analysis of supernatant fractions; 53% of the freshly analysed samples contained mycobacterial DNA in supernatants. PCR positivity increased significantly during storage (to 69% and 77% after 1 and 2 months of storage, respectively, P < 0.0001). Storage-associated bacterial lysis was accompanied by a decrease in smear grade status in 28 of 87 samples (P < 0.0001 after 2 months of storage) and a significant storage-associated reduction in bacterial numbers in the remaining samples.</p> <p>Conclusion</p> <p>We conclude that (i) freshly isolated sputum contains both intact and lysed mycobacteria, (ii) lysis increased during storage and (iii) supernatant fractions routinely discarded during sample processing contain mycobacterial DNA. We propose that supernatant is a valuable sample for PCR for both fresh and stored specimens, particularly those with a low bacterial load in addition to conventional sediment.</p

    Co-Expression of DevR and DevRN-Aph Proteins Is Associated with Hypoxic Adaptation Defect and Virulence Attenuation of Mycobacterium tuberculosis

    Get PDF
    BACKGROUND: The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS: Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevR(NTD)) as a fusion protein with AphI (DevR(N)-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevR(N)-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria. CONCLUSIONS/SIGNIFICANCE: The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevR(N)-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation

    Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch

    Get PDF
    DevR regulon function is believed to be crucial for the survival of Mycobacterium tuberculosis during dormancy. In this study, we undertook a comprehensive analysis of the DevR regulon. All the regulon promoters were assigned to four classes based on the number of DevR binding sites (Dev boxes). A minimum of two boxes are essential for complete interaction and their tandem arrangement is an architectural hallmark at all promoters. Initial interaction of DevR with the conserved box is essential for its cooperative binding to adjacent sites bearing low to very poor sequence conservation and is the universal mechanism underlying DevR-mediated transcriptional induction. The functional importance of tandem arrangement was established by analyzing promoter variants harboring Dev boxes with altered spacing. Conserved sequence logos were generated from 47 binding sequences which included 24 newly discovered Dev boxes. In each half site of an 18-bp binding motif, G5 and C7 are essential for DevR binding. Finally, we show that DevR regulon induction occurs in a temporal manner and genes that are induced early are also usually powerfully induced. The information theory-based approach along with binding and temporal expression studies provide us with comprehensive insights into the complex pattern of DevR regulon activation

    Appropriate DevR (DosR)-Mediated Signaling Determines Transcriptional Response, Hypoxic Viability and Virulence of Mycobacterium tuberculosis

    Get PDF
    Background: The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties. Methodology/Principal Findings: M. tb complemented (Comp) strains expressing different levels of DevR were constructed in Mut1 * background (expressing DevR N-terminal domain in fusion with AphI (DevRN-Kan) and in Mut2DdevR background (deletion mutant). They were compared for their hypoxia adaptation and virulence properties. Diverse phenotypes were noted; basal level expression (,5.362.3 mM) when induced to levels equivalent to WT levels (,25.869.3 mM) was associated with robust DevR regulon induction and hypoxic adaptation (Comp 9 * and 10*), whereas low-level expression (detectable at transcript level) as in Comp 11 * and Comp15 was associated with an adaptation defect. Intermediate-level expression (,3.361.2 mM) partially restored hypoxic adaptation functions in Comp2, but not in Comp1 * bacteria that coexpressed DevRN-Kan. Comp * strains in Mut1 * background also exhibited diverse virulence phenotypes; high/very low-level DevR expression was associated with virulence whereas intermediate-level expression was associated with low virulence. Transcription profiling and gene expression analysis revealed up-regulation of the phosphate starvation response (PSR) in Mut1 * and Comp11 * bacteria, but not in WT/Mut2DdevR/other Comp strains, indicating a plasticity in expression pathways that is determined by the magnitude of signaling perturbation through DevRN-Kan

    Mycobacterium tuberculosis Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development Is Triggered by Vitamin C

    Get PDF
    BACKGROUND: Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O(2) depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O(2) and rapidly induce the DevR regulon at an estimated O(2) saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a 'dormant' drug-tolerant phenotype, but in a manner independent of the DevRS/DosT system. The 'AA-dormancy infection model' offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-'dormant' M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB

    Novel Multipurpose Methodology for Detection of Mycobacteria in Pulmonary and Extrapulmonary Specimens by Smear Microscopy, Culture, and PCR

    No full text
    A novel, robust, reproducible, and multipurpose universal sample processing (USP) methodology for highly sensitive smear microscopy, culturing on solid and liquid media, and inhibition-free PCR which is suitable for the laboratory diagnosis of both pulmonary and extrapulmonary tuberculosis (TB) has been developed. This method exploits the chaotropic properties of guanidinium hydrochloride for sample processing and involves incubating the specimen with USP solution, concentrating bacilli by centrifugation, and using the processed specimen for smear microscopy, culture, and PCR. The detection limit for acid-fast bacilli in spiked sputum by smear microscopy is approximately 300 bacilli per ml of specimen. USP solution-treated specimens are fully compatible with culturing on solid and liquid media. High-quality, PCR-amplifiable mycobacterial DNA can be isolated from all types of clinical specimens processed with USP solution. The method has been extensively validated with both pulmonary and extrapulmonary specimens. Furthermore, the USP method is also compatible with smear microscopy, culture, and PCR of mycobacteria other than tubercle bacilli. In summary, the USP method provides smear microscopy, culture, and nucleic acid amplification technologies with a single sample-processing platform and, to the best of our knowledge, is the only method of its kind described to date. It is expected to be useful for the laboratory diagnosis of TB and other mycobacterial diseases by conventional and modern methods
    corecore