56 research outputs found

    A New Strategy for Antidepressant Prescription

    Get PDF
    From our research and literature search we propose an understanding of the mechanism of action of antidepressants treatments (ADTs) that should lead to increase efficacy and tolerance. We understand that ADTs promote synaptic plasticity and neurogenesis. This promotion is linked with stimulation of dopaminergic receptors. Previous evidence shows that all ADTs (chemical, electroconvulsive therapy, repetitive transcranial magnetic stimulation, sleep deprivation) increase at least one monoamine neurotransmitter serotonin (5-HT), noradrenaline (NA) or dopamine (DA); this article focuses on DA release or turn-over in the frontal cortex. DA increased dopaminergic activation promotes synaptic plasticity with an inverted U shape dose–response curve. Specific interaction between DA and glutamate is mediated by D1 receptor subtypes and Glutamate (NMDA) receptors with neurotrophic factors likely to play a modulatory role. With the understanding that all ADTs have a common, final, DA-ergic stimulation that promotes synaptic plasticity we can predict that (1) AD efficiency is related to the compound strength for inducing DA-ergic stimulation. (2) ADT efficiency presents a therapeutic window that coincides with the inverted U shape DA response curve. (3) ADT delay of action is related to a “synaptogenesis and neurogenesis delay of action.” (4) The minimum efficient dose can be found by starting at a low dosage and increasing up to the patient response. (5) An increased tolerance requires a concomitant prescription of a few ADTs, with different or opposite adverse effects, at a very low dose. (6) ADTs could improve all diseases with cognitive impairments and synaptic depression by increasing synaptic plasticity and neurogenesis

    The prefrontal cortex as a key target of the maladaptive response to stress

    Get PDF
    Research on the detrimental effects of stress in the brain has mainly focused on the hippocampus. Because prefrontal cortex (PFC) dysfunction characterizes many stress-related disorders, we here analyzed the impact of chronic stress in rats on the integrity of the hippocampal-PFC pathway, monitored by behavioral and electrophysiological function and morphological assessment. We show that chronic stress impairs synaptic plasticity by reducing LTP induction in the hippocampal-PFC connection; in addition, it induces selective atrophy within the PFC and severely disrupts working memory and behavioral flexibility, two functions that depend on PFC integrity. We also demonstrate that short periods of stress exposure induce spatial reference memory deficits before affecting PFC-dependent tasks, thus suggesting that the impairment of synaptic plasticity within the hippocampus-to-PFC connection is of relevance to the stress-induced PFC dysfunction. These findings evidence a fundamental role of the PFC in maladaptive responses to stress and identify this area as a target for intervention in stress-related disorders.This work was supported in part by an Acções Integradas Luso-Alemãs grant from the German Academic Exchange Service and the Portuguese Rectors’ Conference, and Mobility Grant 183/2006 from the Institut National de la Santé et de la RechercheMédicale andthe Cabinetfor International Relations ofthe PortugueseMinistry of Science and Higher Education

    Neuropathological and Reelin Deficiencies in the Hippocampal Formation of Rats Exposed to MAM; Differences and Similarities with Schizophrenia

    Get PDF
    Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 (E17) consistently display behavioral characteristics similar to that observed in patients with schizophrenia and replicate neuropathological findings from the prefrontal cortex of psychotic individuals. However, a systematic neuropathological analysis of the hippocampal formation and the thalamus in these rats is lacking. It is also unclear if reelin, a protein consistently associated with schizophrenia and potentially involved in the mechanism of action of MAM, participates in the neuropathological effects of this compound. Therefore, a thorough assessment including cytoarchitectural and neuromorphometric measurements of eleven brain regions was conducted. Numbers of reelin positive cells and reelin expression and methylation levels were also studied.Compared to untreated rats, MAM-exposed animals showed a reduction in the volume of entorhinal cortex, hippocampus and mediodorsal thalamus associated with decreased neuronal soma. The entorhinal cortex also showed laminar disorganization and neuronal clusters. Reelin methylation in the hippocampus was decreased whereas reelin positive neurons and reelin expression were unchanged.Our results indicate that E17-MAM exposure reproduces findings from the hippocampal formation and the mediodorsal thalamus of patients with schizophrenia while providing little support for reelin's involvement. Moreover, these results strongly suggest MAM-treated animals have a diminished neuropil, which likely arises from abnormal neurite formation; this supports a recently proposed pathophysiological hypothesis for schizophrenia

    Acute Stress Induces Contrasting Changes in AMPA Receptor Subunit Phosphorylation within the Prefrontal Cortex, Amygdala and Hippocampus

    Get PDF
    Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex, hippocampus and amygdala. We investigated whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-GluA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented approach to therapeutics

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Dopamine D1 and Glutamate N-Methyl-D-Aspartate Receptors: An Essential Interplay in Prefrontal Cortex Synaptic Plasticity

    No full text
    The aim of the present chapter is to provide a brief overview on DA (mostly via D1 receptors) contribution to synaptic plasticity in the prefrontal cortex and consider new insights into the possible cellular mechanisms underlying these plastic changes. The data presented herein, significant for current understanding prefrontal memory mechanisms, could help finding new strategies for psychiatric disorders associated to cognitive deficits such as schizophrenia.Fil: Kruse, Maria Sol. Inserm; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jay, Thérèse M.. Inserm; Franci

    Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks

    No full text
    International audienceOver the last decade, exposure to high frequency (2450 MHz) electromagnetic fields (EMFs) has been found to induce performance deficit in rodents in spatial memory tasks. As concern was expressed about potential biological effects of mobile communication microwaves, studies testing the effects of signals such as GSM were required. In a previous study, using head-only exposure to 900 MHz GSM EMF, we could not demonstrate any behavioural deficit in two simple learning tasks. The present study aimed at extending these results with more complex spatial learning tasks and a non-spatial task. In a first experiment, rats were trained in a radial-arm maze with a 10-s confinement between each visited arm. In a second experiment, a 15-min intra-trial delay was introduced after four visited arms. In a third experiment, non-spatial memory was tested in an object recognition task. In all experiments, performance of the head-only exposed rats (1 and 3.5 W/kg) was compared with that of sham and control rats. In the first experiment, a slightly improved performance was found after 3.5 W/kg exposure, a result that was not observed in the delay-task. In the third experiment, although some effects on exploratory activity were found, recognition memory was unaffected in exposed rats. Altogether, this set of experiments provides no evidence indicating that spatial and non-spatial memory can be affected by a 45-min head-only exposure to 900 MHz GSM EMF
    corecore