2,129 research outputs found
Phonon driven spin distribution due to the spin-Seebeck effect
Here we report on measurements of the spin-Seebeck effect of GaMnAs over an
extended temperature range alongside the thermal conductivity, specific heat,
magnetization, and thermoelectric power. The amplitude of the spin-Seebeck
effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and
the phonon-drag contribution to the thermoelectric power of the GaMnAs,
demonstrating that phonons drive the spin redistribution. A phenomenological
model involving phonon-magnon drag explains the spatial and temperature
dependence of the measured spin distribution.Comment: 12 pages, 3 figure
Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities
Citation: Cheng, C. M., Nair, A. D. S., Jaworski, D. C., & Ganta, R. R. (2015). Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities. Plos One, 10(7), 13. doi:10.1371/journal.pone.0132657Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis
ICME international survey on teachers working and learning through collaboration
This article presents preliminary results from a survey commissioned for ICME 13 (2016) focusing on "Teachers Working and Learning Through Collaboration". It takes as a starting point a previous survey, commissioned for ICME 10 in 2004 that focused on Mathematics Teacher Education. The current survey focuses centrally on teachers involved in collaborations, sometimes in formal settings of professional development, but also in a more diverse range of collaborative settings including research initiatives. The roles of teachers involved in the collaboration, survey methods, decisions and limitations are described. While some of the findings to date resonate with those of the earlier survey, other findings highlight characteristics and issues relating to the differing ways in which teachers collaborate, either with other teachers or the various 'others', most notably mathematics teacher educator researchers. The roles and relationships that contribute to learning in such collaborations, as well as theories and methodologies found in survey sources, are a
focus of the findings presented here. Studies rarely theorised collaboration, and few of those that did so reported explicitly on how their theoretical frame shaped the design of research methodologies/approaches guiding activities with teachers. One significant outcome has been the difficulty of relating teachers' learning to collaboration within a project, although many initiatives report developments in teaching, teacher learning and students' learning
Time as an operator/observable in nonrelativistic quantum mechanics
The nonrelativistic Schroedinger equation for motion of a structureless
particle in four-dimensional space-time entails a well-known expression for the
conserved four-vector field of local probability density and current that are
associated with a quantum state solution to the equation. Under the physical
assumption that each spatial, as well as the temporal, component of this
current is observable, the position in time becomes an operator and an
observable in that the weighted average value of the time of the particle's
crossing of a complete hyperplane can be simply defined: ... When the
space-time coordinates are (t,x,y,z), the paper analyzes in detail the case
that the hyperplane is of the type z=constant. Particles can cross such a
hyperplane in either direction, so it proves convenient to introduce an
indefinite metric, and correspondingly a sesquilinear inner product with
non-Hilbert space structure, for the space of quantum states on such a surface.
>... A detailed formalism for computing average crossing times on a z=constant
hyperplane, and average dwell times and delay times for a zone of interaction
between a pair of z=constant hyperplanes, is presented.Comment: 31 pages, no figures. Differs from published version by minor
corrections and additions, and two citation
Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4(+) T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host
Citation: McGill, J. L., Nair, A. D. S., Cheng, C. M., Rusk, R. A., Jaworski, D. C., & Ganta, R. R. (2016). Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4(+) T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. Plos One, 11(2), 15. doi:10.1371/journal.pone.0148229Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4(+) T cell proliferation and IFN. production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection
Unique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions
In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding sites, a DNA-unwinding element, and sequences that bind regulatory proteins. However, detailed structures of oriCs are shared by related species while being significantly different in unrelated bacteria. In this work, we characterized Epsilonproteobacterial oriC regions. Helicobacter pylori was the only species of the class for which oriC was characterized. A few unique features were found such as bipartite oriC structure, not encountered in any other Gram-negative species, and topology-sensitive DnaA-DNA interactions, which have not been found in any other bacterium. These unusual H. pylori oriC features raised questions of whether oriC structure and DnaA-DNA interactions are unique to this bacterium or whether they are common to related species. By in silico and in vitro analyses we identified putative oriCs in three Epsilonproteobacterial species: pathogenic Arcobacter butzleri, symbiotic Wolinella succinogenes, and free-living Sulfurimonas denitrificans. We propose that oriCs typically co-localize with ruvC-dnaA-dnaN in Epsilonproteobacteria, with the exception of Helicobacteriaceae species. The clusters of DnaA boxes localize upstream (oriC1) and downstream (oriC2) of dnaA, and they likely constitute bipartite origins. In all cases, DNA unwinding was shown to occur in oriC2. Unlike the DnaA box pattern, which is not conserved in Epsilonproteobacterial oriCs, the consensus DnaA box sequences and the mode of DnaA-DnaA box interactions are common to the class. We propose that the typical Epsilonproteobacterial DnaA box consists of the core nucleotide sequence 5'-TTCAC-3' (4-8 nt), which, together with the significant changes in the DNA-binding motif of corresponding DnaAs, determines the unique molecular mechanism of DnaA-DNA interaction. Our results will facilitate identification of oriCs and subsequent identification of factors which regulate chromosome replication in other Epsilonproteobacteria. Since replication is controlled at the initiation step, it will help to better characterize life cycles of these species, many of which are considered as emerging pathogens
Bright Fluorescent Chemosensor Platforms for Imaging Endogenous Pools of Neuronal Zinc
AbstractA series of new fluorescent Zinpyr (ZP) chemosensors based on the fluorescein platform have been prepared and evaluated for imaging neuronal Zn2+. A systematic synthetic survey of electronegative substitution patterns on a homologous ZP scaffold provides a basis for tuning the fluorescence responses of “off-on” photoinduced electron transfer (PET) probes by controlling fluorophore pKa values and attendant proton-induced interfering fluorescence of the metal-free (apo) probes at physiological pH. We further establish the value of these improved optical tools for interrogating the metalloneurochemistry of Zn2+; the novel ZP3 fluorophore images endogenous stores of Zn2+ in live hippocampal neurons and slices, including the first fluorescence detection of Zn2+ in isolated dentate gyrus cultures. Our findings reveal that careful control of fluorophore pKa can minimize proton-induced fluorescence of the apo probes and that electronegative substitution offers a general strategy for tuning PET chemosensors for cellular studies. In addition to providing improved optical tools for Zn2+ in the neurosciences, these results afford a rational starting point for creating superior fluorescent probes for biological applications
Chern - Simons Gauge Field Theory of Two - Dimensional Ferromagnets
A Chern-Simons gauged Nonlinear Schr\"odinger Equation is derived from the
continuous Heisenberg model in 2+1 dimensions. The corresponding planar magnets
can be analyzed whithin the anyon theory. Thus, we show that static magnetic
vortices correspond to the self-dual Chern - Simons solitons and are described
by the Liouville equation. The related magnetic topological charge is
associated with the electric charge of anyons. Furthermore, vortex - antivortex
configurations are described by the sinh-Gordon equation and its conformally
invariant extension. Physical consequences of these results are discussed.Comment: 15 pages, Plain TeX, Lecce, June 199
- …