222 research outputs found

    Mycorrhizal Application as a Biocontrol Agent against Common Root Rot of Barley

    Get PDF
    This study was conducted to assess the biocontrol efficacy of vesicular arbuscular mycorrhizae (VAM) against barley common root rot caused by Cochliobolus sativus. Mycorrhization of barley was achieved by growing the plants in expanded clay mixed with 10% (v/v) VAM fungus inoculum in pots experiments. Large differences in disease reactions were observed among genotypes and among treatments. VAM treatments significantly reduced the percentage of disease severity in infected barley plants and increased significantly root biomass, which could be attributed to enhanced nutrients uptake, via an increase in the absorbing surface area. It can be concluded that the application of VAM as a biocontrol agent played an important role in plant resistance and exhibit greater potential to protect barley plants against C. sativus

    Detecting network attacks model based on a convolutional neural network

    Get PDF
    Due to the increasing use of networks at present, Internet systems have raised many security problems, and statistics indicate that the rate of attacks or intrusions has increased excessively annually, and in the event of any malicious attack on network vulnerabilities or information systems, it may lead to serious disasters, violating policies on network security, i.e., “confidentiality, integrity, and availability” (CIA). Therefore, many detection systems, such as the intrusion detection system, appeared. In this paper, we built a system that detects network attacks using the latest machine learning algorithms and a convolutional neural network based on a dataset of the CSE-CIC-IDS2018. It is a recent dataset that contains a set of common and recent attacks. The detection rate is 99.7%, distinguishing between aggressive attacks and natural assertiveness

    Viability and pathogenicity of Rhynchosporium secalis after long-term storage

    Get PDF
    Long-term storage of Rhynchosporium secalis cultures is a challenge for any lab managing a working collection of isolates. In this work, the viability and pathogenicity of R. secalis stock cultures were tested after four years of storage at −20 °C in different concentrations of glycerol. Germinability were measured after each storage by collecting spores by coverslips and placing them on water agar in closed Petri dishes at 20–22 °C in the dark and allowed to germinate for 24 h. Additionally, at the end of each storage treatment, conidia were collected by coverslips from sporulated leaf lesions of symptomatic barley leaves and placed under similar conditions as non-stored controls. Cultures of all stored isolates were viable with a spore germination rate of 72.28% (Rs22) after four years of storage at −20 °C in 60% glycerol. Low viability and contamination were observed when spores were stored in sterile distilled water and in Lima bean agar. All isolates continued to infect barley leaves after 4 years of storage. However, the pathogenicity was significantly (P <0.05) reduced in isolates stored in glycerol as compared with controls. This work helps to preserve R. secalis for a long term period at −20 °C without any contamination; therefore, due to the low costs our results could be applicable for laboratories that have limited resources

    Transcriptome profile of early responsive genes in susceptible barley during Rhynchosporium secalis infection

    Get PDF
    Scald caused by Rhynchosporium secalis, is an economically important disease found worldwide. In order to profile genes and pathways responding to R. seclais infection, leaf transcriptomes before and after fungus inoculation in susceptible barley were compared using cDNA-AFLP technique. Transcriptional changes of 144 expressed sequence tags (ESTs) were observed, of which 18 have no previously described function. Functional annotation of the transcripts revealed a wide range of pathways including cell wall fortification, cytoskeleton construction and metabolic processes at different time points. Furthermore, the results of RT-PCR analysis on candidate genes, ABC transporters and lycine-specific demethylase were consistent with the cDNA-AFLP data in their expression patterns. Taken together, our data suggest that susceptible barley reprograms metabolic and biological processes to initiate a suitable response R. secalis infection

    Salicylic acid pathway changes in barley plants challenged with either a biotrophic or a necrotrophic pathogen

    Get PDF
    The biotrophic Blumeria graminis (Bg) and the necrotrophic Cochliobolus sativus; (Cs) are economically important fungal pathogens of barley globally. To better understand barley mechanisms to resist these pathogens, changes in salicylic acid (SA) and its responsive genes particularly the pathogenesis related PR1, PR2, PR3 and PR5 were evaluated using qRT-PCR across four time points post infection. Data showed that SA contents significantly increased (P = 0.001) in infected plants of both resistant and susceptible genotypes 24 h post inoculation in comparison with non-infected controls. In addition, time-course tests revealed a notable contradiction in the defense-related genes expression patterns between barley and Bg and Cs interactions, showing that expression patterns of the same defense-associated genes were altered in adaptation to different pathogens. PR1 and PR2 genes were highlyactivated inresistant plants infected with the necrotrophic pathogen Cs rather than of the biotrophic one. The uniformity in barley defense response mechanisms could be in convention with the well-accepted notion that these responses are high intense in the resistant genotype. Our work provides useful information on the expected role of SA pathways in barley towards biotrophic and necroptrophic pathogens with different lifestyles

    Salicylic acid and hydrogen peroxide accumulation in relation to hydrolyte leakage in barley plants challenged with Cochliobolus sativus

    Get PDF
    Spot blotch (SB) caused by the hemibiotrophic fungal pathogen Cochliobolus sativus is a destructive disease of barley worldwide. To better understand the mechanisms of resistance to this disease, the involvements of salicylic acid (SA), hydrogen peroxide (H2O2) and ion fluxes during the interaction between resistant and susceptible barley seedlings and C. sativus were investigated. Early SA accumulation in leaf tissues was accompanied with an increase in H2O2 concentration in both compatible and incompatible interactions. The resistant cultivar constitutively contained higher levels of H2O2 and SA, as well as during the 72 h as compared with the un-infected control (0 h). However, levels increased rapidly upon infection in both cultivars. Moreover, a markedly greater increase in ion fluxes from the compatible material compared with the incompatible one was observed. Results suggest that SA and H2O2 accumulation are important during both compatible and incompatible barley- C. sativus interactions

    Changes in PR2 and PAL Patterns in Barley Challenged with Leaf Stripe (Pyrenophora graminea) and Powdery Mildew (Blumeria graminis) Diseases

    Get PDF
    The seed-borne (Pyrenophora graminea; Pg) and foliar (Blumeria graminis; Bg) are two economically important fungal pathogens of barley worldwide. Barley plant resistance genes, as the pathogenesis related proteins play an important role in defense mechanisms. This study aimed to monitor the expression of PR2 and PAL pathogenesis related genes during compatible/incompatible barley interaction with Pg and Bg at different time points of disease development using the Quantitative Real-time PCR technique (qRT-PCR). Comparison of data showed that PR2 and PAL were significantly over expressed in infected resistant and susceptible plants as against their lower expression in controls,. Upregulation of these defense-related genes during Pg and Bg infections was companied with a slow development of disease symptoms at the time course in the resistant genotype. qRT-PCR analysis revealed higher gene expression in resistant barley plants inoculated with Pg as compared with Bg, with a maximum expression for PR2 (13.8 and 5.06-fold) and PAL (14.8 and 4.51-fold) respectively, at the latest stage of each disease development. It was also noteworthy that PR2 and PAL genes, had higher constitutive expression and faster induction for the both pathogens in the resistant genotype as compared with the susceptible one. Obtained results suggest that both genes, PR2 and PAL, positively regulate Pg- and Bg-resistance in barley plants during disease progress. These expression patterns can provide useful insights to better understanding of the barley–fungus interactions with different fungal lifestyles

    Diallel Analysis of Barley Resistance to Blumeria graminis

    Get PDF
    Powdery mildew, caused by Blumeria graminis f. sp. hordei (Bgh) is a common foliar disease of barley worldwide. The creation of new cultivars with durable resistance to Bgh is highly desirable. This work was undertaken to examine the resistance to Bgh in 10 genetically diverse barley parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Two experiments, in a growth chamber on seedling and in the field on adult plant stages, were conducted using a randomized complete block design with three replicates. The parents expressing differences in their reactions to Bgh were crossed in a half-diallel mating design to generate 45 full-sib families. Genetic component analysis showed significant effects for both GCA and SCA under both experiments suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. The estimate of narrow-sense heritability was 0.63 and broad-sense heritability was 98% indicating that selection for the disease resistance should be effective in these crosses. Resistant parents ‘Banteng, PK 30-136 and ‘Igri’ had significantly negative GCA effects, suggesting their prime suitability for use in barley breeding programs to improve resistance to Bgh

    A simple approach to assess common root rot severity incidence data in wheat

    Get PDF
    Common root rot (CRR) of wheat, caused by Cochliobolus sativus, produces discoloration of the subcrown internodes (SCIs) and is directly related to yield losses. It is critical to clearly define and standardize the CRR assessment methods to avoid subjectivity and variability between assessors. Therefore, in this study, a comparison between the incidence (I; proportion of diseased SCIs) and the severity (S; proportion of SCI showing CRR symptoms) was investigated to explore the possibility of simplifying disease rating. Assessments were made visually at multiple sample sites in artificially- and naturally-inoculated research and production fields for three growing seasons. Significant differences (P = 0.001) in mean I and S values were found among cultivars, with values being consistently higher in the susceptible ones. However, CRR severity increased linearly as incidence increased in both Triticum durum and T. aestivum wheat. Their slopes and intercepts of the I–S relationship were consistent over the three growing seasons. This result may be considered a significant contribution for CRR assessment in wheat breeding programs
    corecore