
United Arab Emirates University
Scholarworks@UAEU

Theses Electronic Theses and Dissertations

2008

Flow in Porous Media and Environmental Impact
Noujoud M Jawhar

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

Part of the Environmental Sciences Commons

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for
inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Jawhar, Noujoud M, "Flow in Porous Media and Environmental Impact" (2008). Theses. 419.
https://scholarworks.uaeu.ac.ae/all_theses/419

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/419?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae


United Arab Emirate University 

Dean hip of Graduate Studies 
M.Sc. Program in Environmental Sciences 

FLOW IN POROUS MEDIA AND 
ENVIRONMENT AL IMPACT 

By 

Noujoud M. Jawhar 

A thesis 

Submitted to 

The United Arab Emirates University 

In partial fulfillment of the requirements 

for the degree of M.Sc. in Environmental Sciences 

2008 



United Arab Emirates Uni versity 
Deanship of Graduate Studies 

M.Sc .  Program in Environmental Sciences 

FLOW IN POROUS MEDIA AND EVIRONMENTAL 

IM PA C T  

By 

Noujoud M. Jawhar 

A thesis 
Submitted to 

United Arab Emirates University 
In partial fulfi l lment of the requirements 

For the degree of M .Sc.  in Environmental Sciences 

SUP ERVISED BY 

Dr. F. Allan Dr. M. Anwar Dr. M. Syam 

Professor Professor Professor 

Department of Department of Head Department of 
Mathematics Mathematics Mathematical Sciences 

Faculty of Science Acting Dean, College of Faculty of Science 
Science 

UAE University UAE University 
UAE University 

11 



The The i of Noujoud Mohamed Jawhar for the Degree of Ma ter of 
ci nc in Environmental is approved. 

4�···· ............... . 

Examining Committee Member, Dr. Fathi M. Allan 

Examining Committee Member, Dr. Ali Mohammed Sayfy 

Examining Committee Member, Dr. Saud Khashan 

it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

s istant Chief Academic Officer for Graduate Studies, Prof. Ben Bennani 

United Arab Emirates University 

200812009 



A CKNOWLEDGMENT 

FIrst and foremost, I want to thank all members of the United Arab Emirates 

niversity for providing an excel lent and inspiring working atmosphere . In particular, 

the director of the environmental sciences graduate program, Dr. Tarek Youssef, who 

has created an optimum infrastructure, so that a lack of resources is unimaginable .  His 

managerial ski l l s  and uncompromising quest for excellence shape all  his students 

signi ficantly during their time at the institute.  I would also l ike to thank the faculty 

and staff at the United Arab Emirates University for the help and support throughout 

the course of my studies, in partic ular, Dr. Abdul Majeed A l khajah, Dr. Mohamad el 

Deeb, and Dr. Waleed Hamza. A special thanks to Dr. Muhammad Hajj i for his 

enormous support and help with Mathematica while developing the mathematical 

models .  

Thi s  work would not  have been completed without help and support of many 

individuals.  I would l ike in particular to thank my advisor Dr. Fathi Al lan for his great 

insight, help, and very useful advice and guidance throughout the course of my 

research at UAEU. I truly learned a lot from him from both technical as well as 

professional perspectives. I have a lways appreciated and admired h is  motivation and 

dri ve for excellence. 

I also would l ike to thank the other members of my committee, Dr. 

Mohammad N. Anwar and Dr. Muhamad Syam for their guidance and assistance 

which was very valuable and indispensable in the process of completing this research .  

I thank them for taking from their valuable t ime to direct, and support this work. 

111 



Finally. I am very grateful for the support of my parents, my sisters. and my 

brothers, and my husband Imad for his enduring patience, understanding, and love, 

and my precIOus chi ldren Alaa. Hassan, and Hanan who were my great inspiration .  

They pro ided me  wi th indispensable support that was essential during the course of 

my study, and for the completion of this work . 

i v  



ABSTRACT 

Recently, a great deal of interest has been focused on the investigation of 

transport phenomenon in di sordered systems .  In particular, fluid flow through porous 

media has attracted m uch attention due to its importance in several technological 

processes such as fi l tration. catalysis, chromatography spread of hazardous wastes, 

petroleum exploration, and recovery. Furthermore, flow through porous media is  an 

important environmental problem that has environmental impl ications in several areas 

such as the study of poll ution, fate of contaminants, contaminations issues re lated to 

agriculture, c iv i l  constructions, coastal management, and many more . 

In this thesis, the f luid flow through mult i- layers porous media is investigated. 

A mathematical model for the flow velocit ies is set to describe the flow through these 

different layers, together wi th initial and boundary conditions.  More attention is made 

to the veloci ty profiles at the interface. The model is  then sol ved with two different 

methods the shooting method and the finite difference method. We consider a finite 

width three porous layer problem, where the layers have different permeabi l i ty values 

which introduce a discontinui ty in the penneabi l i ty at the interface region . At the 

interface the continuity of the veloci ty and shear stress are imposed. A comparison 

between the nonl inear shooting method and the finite difference approach is then 

made and it shows that the shooting method is more accurate and more efficient.  
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1. 0 I TRaDUCTION 

1.1 Porou Medium 

A porous medium is a material  that consists of  a solid matrix with an 

interconnected void.  The interconnec tedness of the pores a l lows the flow of one or 

more fl uids though the material. In the simplest situation which is a single phase flow, 

the void is saturated by a single fluid .  In two phase fl ow, a liquid and a gas share the 

void pace. Fluid flow in a porous medium resembles that of a pouring a cup of water 

for example over soil and letting the water flow into the soil due to the gravi tational 

forces [ 1 ] . 

A porous material or structure must pass at least one of the fol lowing two tests 

in order to be qualified as a porous medium.  The first test, it must contain spaces, 

cal led pores or voids, free of solids imbedded in the solid or semisolid matrix .  The 

pores usually contain some fl uid, such as water, oil, or a mixture of different fluids. 

The second test is that i t  must be permeable to a variety of fluids .  That is fl uids should 

be able to penetrate through one face of the material and emerge on the other side. To 

disti nguish between a porous sol id and jus t  any sol id is  a straight-forward process 

since the infi l tration of viscous flow is a predetermined condi tion for the material  to 

qual ify as a porous medium.  

Porous materials are encountered l i teral ly everywhere in everyday l ife,  in 

technology, and in nature .  Many natural substances such as rocks, and biological 

tissues such as lungs and bones, and man made materials such as cements, foams and 

ceramics can be considered as porous media. More examples of porous material 

inc lude soil which is capable of performing i ts function of sustaining plant l ife only 



becau e it can hold water in i ts pore spaces.  Bui lding materials such as bricks, 

concrete, l imestone, and sand tone are examples of porous materials and they are 

considered to be better thermal insulators because of their porous nature [2 ] .  

The concept of  porous media i s  used in many areas of  applied science and 

engineering. It  is used in mechanics such as geo-mechanics, soi l  and rock mechanics, 

in engineering such as petroleum and construction engineering, in  geosciences such as 

hydrogeology and geophysics, in  biology and biophysics, in material sciences, and 

many more fie lds of science. However, the most important areas of technology that 

depend significant ly on the properties of porous media are hydrology, which relates to 

water movement in earth and sand structures ,  petroleum engineering which is mainly 

concerned with petroleum, and natural gas production, exploration well dri l l ing, and 

logging [ 1 ]. Additionally, the flow of blood and other body fluids and electro-

osmosis are few examples where porous m edia plays a cri tical role in medicine and 

biological engineering.  Fluid flow through porous media has emerged as a separate 

field of study because it i s  a subject of most common interest [3]. 

The porosi ty cp and the permeabili ty k are two important quanti ties that 

describe the properties of a porous medi um.  The porosity of a porous medi um is  

defined as :  

pore volume 
matrix volume 

(1 .0 ) 

where the pore volume denotes the total volume of the pore space in the matrix and 

the matrix volume is the total vol ume of the matrix including the pore space. Thus, 

porosity is  greater than or equal zero and less than or equal 1 .  Porosity equals to zero 

2 



when the pore volume equals to zero, i . e .  there is no flow. Porosity equals to 1 when 

the pore olume is the same as the matrix volume [4] . 

The permeabi l i ty k describes the abi l i ty of the fl uid to flow through the porous 

medium. It is often cal led the absolute permeabi l i ty, and it is a quantity that depends 

only on the geometry of the medium. There has been much effort to establ ish relations 

between the permeabi l i ty and the porosity. However, a general formula seems to be 

impossible to find, and the permeabi l i ty is found to be proportional to rpm, where m is 

in the range of 3 to 6 depending on the geometry of the medium [3 ,4], 

The fl uid flowing in the pore space is characterized by the dynamical vi scosi ty 

Jl. The viscosi ty indicates the resistance i n  the fluid due to i ts deformations. At the 

microscopic level there are friction forces in the fluid caused by the in terchange of 

momentum in col l isions between the molecules.  Thus, the viscosity of the fluid is set 

by the strength of the friction forces [3] . 

Fluid flow through a porous medium is often given by the Darcy equation . 

Consider a porous medium of absolute permeabi l i ty k in a homogeneous gravi tation 

fie ld  where one fl uid of vi scosity Jl is injected through the medium by applying a 

pressure gradient \1 P across the matrix .  Then the flow rate U of the fl uid through the 

medium is given by Darcy's equation : 

-7 k � 

U = - - (\1P- pg) 
,u 

(1 . 1  ) 

Where g denotes the acceleration due to the gravi tational forces and p is the 

densi ty of the fI uid [4] . 

3 



1.2 Porosity 

From a hydrologic point of VIew, the fundamental interests in a porous 

medium are i ts abi li ty to hold and transmit water. Porosi ty is the most important term 

among many other terms that relate to the water holding potential of a medium. The 

porosity <p of a porous medium is defined as the fraction of the total volume of the 

medium that is  occupied by void space such as in equation ( 1 .0) .  

In defining <p in this way a l l  the void space is assumed to be connected. If 

some of the pore space in a medium are disconnected from the remainder, then 

effective porosity is introduced which is defined as the ratio of connected voi d to total 

olume. Depending on the type of the porous medium, the porosi ty may vary from 

near zero to almost unity .  For example certain types of volcanic rocks have very low 

porosities, while fibrous filters and insulators are highly porous substances [5]. There 

are many types of void space, but it is important to distinguish between two kinds of 

pore space. The first one forms a continuous phase within the porous medi um cal led 

interconnected or effecti ve pore space .  The other one consists of isolated or non 

interconnected pores dispersed over the medium. Moreover, pore space has a direct 

effect upon productive value of soi ls because of its influence upon water holding 

capac i ty and upon the movement  of air, water, and roots through the soi l .  For 

example, when the pore space of a productive soi l is  reduced 1 0  percent, movement of 

air, water, and roots is  greatly restric ted and growth is  very seriously impeded [1]. 

1 .2. 1 Factors Affecting Porosity 

There are many factors that affect porosity. and there has been a lot of effort 

done to determine approximate l imits of porosities values . The factors governing the 

magnitude of porosity are the fol lowing. 

4 



A. Uniformity of grain size : unifonnity or sorting is the gradation of grains. 

If small particles of si l t  or c lay are mixed wIth larger sand grains, the effective 

porosi ty wil l  be considerably reduced. Sorting depends on at least four major 

factors which are size range of the material , type of deposition current 

characteristics, and the duration of the sedimentary process [ 5] .  

B. Degree of cementation: The highly cemented sandstones have low 

porosi ties, whereas the soft unconsol idated rocks have high porosities. The 

cementation process is very essenti al because fi l l ing void space with mineral 

material wil l  reduce porosity. 

C. Amount of compaction: Duri ng and after deposition, compaction tends 

to close voids and squeeze fluid out to bring the mineral particles closer 

together especial ly the finer grained sedimentary rocks. Generally porosi ty is 

lower in deeper, older rocks, but exceptions to this basic trend are common 

[ 5 ] .  

5 



1 .2.2 Cia sification of porosity 

Additional tenns should be introduced regarding tenninology with respect to 

the porosity namely the primary and the secondary fonns. The primary porosity refers 

to the original porosity of the medium upon deposition . Secondary porosity refers to 

that portion of the total porosity resulti ng from processes such as dissol ution. For 

example, l imestone has a very low primary porosity upon deposition . If raised above 

sea leveL di ssolution processes can lead to the fonnation of caves with very large 

secondary porosity. A similar interpretation applies to the distinction between solid 

and fractured rock. The rock matrix has very low porosity. The presence of fractures 

increases the secondary porosity over the primary porosity. The secondary porosity of 

a medi um is not always greater than its primary porosity, for example, a sand deposit 

that may become cemented over time to form sandstone. The chemical ly  precipitated 

cementing agents occupy part of the pore space, therefore reducing the overall 

porosity [ 1 ,  4] . 

During sedimentation some of the pore spaces initia l ly developed became 

isolated from the other pore spaces by various processes such as cementation and 

compaction. Thus. many of the pores wil l  be interconnected, whereas others wi l l  be 

completely i solated. This leads to two disti nct categories of porosity, namely total or 

absolute and effective. Absolute porosity i s  the ratio of the total void space in the 

sample to the bu lk  volume of that sample regardless of whether or not those void 

spaces are interconnected. A rock may have considerable absolute porosity and yet 

have no fluid conducti vity for lack of pore interconnection . Examples of this are lava 

and pumice stone .  

Effective porosity is the ratio of the  interconnected pore volume to the bulk 

volume. Thi s  porosity is  an indication of the  abil ity of a rock to conduct fluids, but it  
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should not be used as a measure of the flu id  conductivity of a rock. It is affected by a 

number of factors inc luding the type, conten t  and hydration of the c lays present in the 

rock, the heterogeneity of grain sizes, the packing and cementation of the grains, and 

any weathering and leaching that may have affected the rock.  Experimental 

techniques for measuring porosi ty must take these facts into consideration [ 1  3, 5 ] .  

For natural media, <t> does not normal ly exceed 0 .6 .  For beds of solid spheres 

of uniform diameter, <t> varies between 0. 2545 and 0.4764. For man made materials 

such as metal l ic foams <t> can approach the val ue l .  Table I I I  i l l ustrates the different 

values of porosity and other properties of common porous materials [4] . 

1.3 DA RCY'S LAW 

The science of groundwater flow originates from about 1 856, in  which year 

the c i ty engineer of Dijon, Hemy Darcy, published the results of the investigations 

that he had carried out for the design of a water supply system based on subsurface 

water carried to the val ley in which Dijon i s  located, by permeable layers of soi l ,  and 

supplied by rainfal l  on the surroundings. Since that time the basic law of groundwater 

movement carries h is  name, but the presentation has been developed, and the law has 

been generalized in several ways [6 ] . Henry Darcy's investigations revealed 

proportional i ty between flow rate and the applied pressure di fference. In modern 

notation this is expressed by equation ( l . 1 ) , where 'V P is the pressure gradient in the 

flow direction, and J.l is the viscosity of the fluid. The coefficient k is the permeabil i ty, 

and it is independent of the nature of the fl uid but i t  depends on the geometry of the 

medium, U is  the flow rate, g denotes the acceleration due to the gravi tational forces, 

and p is the density of the fluid.  

7 



It is useful [0 consider as a point of reference, the hydrostatics in a porous 

medium, the pores of which are completely filled with a fluid of density p . If the 

pressure in the fluid is denoted by p, the principles of hydrostatics teach that in the 

absence of flow the pressure increases with depth, and the local pressure gradient is 

equal to pg, where g is the gravity acceleration. Thus, with the positive z-axis 

pointing upwards, if there is no flow we have: 

ap = 0 ,  
ax 

ap = 0  , 
ay 

ap + pg = 0 ,  
a::: 

(1 .2 ) 

(l.3 ) 

(1.4 ) 

These equations express equilibrium of the pore fluid. They are independent of 

the actual pore geometry, provided that all the pores are interconnected [1]. 

In the case when the pore fluid moves with respect to the solid matrix a frictional 

resistance is generated, due to the viscosity of the fluid and the small dimensions of 

the pores. The essence of Darcy's experiments result is that for relatively slow 

movements the frictional resistance is proportional to the flow rate. If inertia effects 

are disregarded, and if the porous medium is isotropic, that is the geometry of the pore 

space is independent of the direction of flow, the equations of equilibrium can be 

written as: 

ap + jl qx = 0 
ax k 

8 
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CJp 11 -+-q� = O 
CJ;: k ' (1.7 ) 

Where )..l is the viscosity of the fluid, and k indicates the permeability of the 

porous medium. The quantities qx, qy, and qz, are the three components of the 

specific discharge vector, where specific discharge denotes the discharge through a 

certain area of soil, di vided by that area [6] . 

Darcy's law is a simple mathematical statement which summarizes several 

familiar properties that groundwater flowing in aquifers demonstrates. Such properties 

include first if there is no pressure gradient over a distance, no flow occurs. Second 

if there is a pressure gradient, flow will occur from high pressure towards low 

pressure; the greater the pressure gradient the greater the discharge rate. Third, the 

discharge rate of fluid will often be different through different formation materials, or 

even through the same material in a different direction, even if the same pressure 

gradient exists in both cases [3, 5 6 ] .  

9 



1.3 PERMEAB I L I TY 

It is the term used for the conductivity of the porous medium with respect to 

permeation by a fluid. It has limited usefulness because its value in the same porous 

ample may vary with the properties of the permeating fluid and the mechanism of 

permeation. This quantity is called permeability k, and its value is uniquely 

determined by the pore structure. Darcy is the practical unit of permeability [3, 4]. A 

porous material has k equals to 1 Darcy if a pressure difference of 1 atmosphere will 

produce a flow rate of 1 cm3/sec of a fluid with 1 cP viscosity through a cube having 

sides 1 cm of length. Thus: 

1 Darcy 
[�*lep) 

sec 
(1 .8  ) 

(latm 3) , --*lem 
em 

One Darcy is a relatively high permeability, and the permeability of most 

reservoir rock is less than one Darcy. 

Measurement of permeability in the case of isotropic media is usually done on 

linear, mostly cylindrically shaped, core samples. The experiment would be arranged 

in a way to have either horizontal or vertical flow through the sample. Both liquids 

and gases have been used to measure penneability. However, liquids sometimes 

change the pore structure, thus the permeability changes as well, and that is due to the 

rearrangement of some particles, swelling of certain materials in the pores such as 

clays, and chemical reactions. In principle, measurement at a single steady flow rate 

permits calculation of the permeability from Darcy's law, however there is usually 

considerable experimental error when measuring, that is why it is advised to perform 

measurements at various low flow rates, plot the low rates versus the pressure drop 

1 0  



and fit a straight line to the data point. According to Darcy's law, this line must pass 

through the origin. However, the scatter of the data points might sometimes cause the 

best fitting straight line not to pass through the origin. If the dara points cannot be 

fitted with a straight line, the Darcy's law is not applicable and the system needs to be 

investigated to find the reasons of the deviation [1, 3, 6]. 

There are two parameters that describe the permeability, the penneability k, 

and the hydraulic conductivity K, related to each other by the following equation: 

Where p is the density of the fluid, g is the gravity, and j...l is the fluid's 

iscosity. The most fundamental property is the permeability k which only depends 

upon the properties of the pore space. Because of the factors 11 and p in this equation 

the hydraulic conductivity also depends upon the fluid properties, in particular upon 

the viscosity. This means that more effort is required to let a more viscous fluid flow 

through a porous medium. It also means that K through the viscosity depends upon 

the temperature. In areas with great fluctuations between the temperatures in summer 

and winter, seasonal variations in the groundwater discharge may result [5]. 

One of the most important properties of soils is the velocity of water flow though 

the pore spaces caused by a given force. A measure of how easily a fluid, for example 

water, can pass through a porous medium for example soils. The permeability of soil 

is defined as the velocity of flow caused by a unit hydraulic gradient. It is not 

influenced by the hydraulic slope, and this is an important point of difference between 

permeability and infiltration. Also the tenn permeability is used for designating flow 

through soils in any direction. It is influenced most by the physical properties of the 

soil. In saturated field soils penneability varies between wide limits: from less than 1 

11 



foot per year in compact clay soils, up to several thousand feet per year in gravel 

formations. For unsaturated soils, the moisture content is one of the dominant factors 

influencing permeability [7, 8, 9]. 

Furthermore, many physical and chemical characteristics of soils are related to 

their texture. Fine grained soils have a much larger surface area than coarse grained 

oils. Thus, their mineral structure is different, resulting in a much greater capacity for 

sorption of chemicals. On the other hand, well sorted, coarse grained soils have a 

much smaller sorption capacity and a much larger permeability, for example, 

cemented sediments include sandstone and shale. Depending on the degree of 

cementation, sandstone can be very permeable and can serve as an excellent source 

for water supply. Shale has very low permeability because shale deposits are hydro

geologically significant when they act as confining beds bounding more permeable 

strata. Carbonate rocks such as limestone have relatively high amounts of void space 

but have low permeability. Igneous and metamorphic rocks have small amounts of 

void space about less than 1 percent of the rock mass. In addition, the few present 

pores are small and not interconnected, resulting in permeabilities that may be 

regarded as zero for almost all practical problems [5 10, 1 1]. However, all rocks such 

as sedimentary, igneous, and metamorphic can be fractured by earth stresses. Tables I 

and II illustrate the different values of permeability and hydraulic conductivity of 

common porous materials Fractured rock is quite different from unfractured rock and 

that is because water may move easily through the fractures giving the rock mass a 

higher permeability although not much capability for storing water within the pore 

space. In addition, rock that is fractured by earth stresses may develop directional 

characteristics to its permeability, having a greater potential for allowing flow in 

certain directions. 
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Table I Values of Hydraulic Conductivity 

Material Hydraulic cond uctivity K (m/s) 
Clay 1 0-1 U to 1 0-15 
Silt 1 0-lS to 1 0-0 
Sand 1O.� to 1 0-) 
Gravel 1 0-': to 1 0-1 

Table I I  Values of Permeability 

Material Permeability k (m.t) 
Clay 1 0-1/ to 1 0- 1) 
Silt lO-D to 1O-1j 
Sand 1 0-1- to lO-IU 
Gravel 1 0-" to 1 0-lS 

Table III alues of Porosity and Permeability 

Material Porosity 
Brick 0. 1 2-0.34 
Cigarette 
cigarette filters 0. 1 7-0.49 
Coal 0.02-0. 1 2  
Concrete 0.02-0.07 
copper powder, 0.09-0.34 
Fiberglass 0.88-0.93 
granular crushed rock 0.45 
Hair 0.95 -0.99 
Leather 0.56-0.59 
Limestone 0.04-0. 1 0  
Sand 0.37-0.50 
Sandstone 0.08-0.38  
silica grains 0.65 
silica powder 0.37-0.49 
Soil 0.43-0.54 
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Permeability [cru2] 
4.8* 1 0-11- 2.2* 1 0-" 
1 . 1 .8* 1 0-) 

3 . 3* 1 0'0- l . 5* 1O-) 

9 .5* 1O-1U- 1 .2* 1 0-" 
2* 1 0-'- 4.5* 1O-IU 
2* 1 0-'- 1 . 8* 1 0-0 
5* 1 0-1-- 3* 1 0-0 

1 . 3* 1O-lu_ 5 . 1 * lO'IU 
2.9* 1 0-"- 1 .4* 1 0" 



1.4.1 elas ification of permeability 

There are two types of permeability, pnmary permeability, which is also 

known as the matrix permeability, and secondary permeability. Matrix permeability 

originated at the time of deposition of sedimentary rocks where secondary 

permeability resulted from the alteration of the rock matrix by compaction, 

cementation, fracturing and solution. While compaction and cementation generally 

reduce the primary permeability, fracturing and solution tend to increase it. For 

example, in some reservoir rocks, in particular low porosity carbonates, secondary 

permeability provides the main conduit for fluid migration. 

Furthermore, there are many factoring affecting the magnitude of 

permeability. First factor is the shape and size of sand grains. That is if the rock is 

composed of large and uniformly rounded grains, its permeability will be 

considerably high and of the same in both directions horizontally and vertically. 

Permeability of reservoir rocks is generally lower, especially in the vertical direction, 

if the sand grains are small and of irregular shape. Cementation is another factor. Both 

porosity and permeability are influenced by the extent of cementation and the location 

of the cementing material within the pore space. Fracturing and solution is another 

factor. Fracturing is not an important cause of secondary permeability in sandstones, 

except where they are interbedded with shales and limestones [5]. 

1.S SOIL S TRU CTU RE 

Soil structure is described in terms of the size and the shape of particles. It is 

very helpful to realize the differences among soils in order to better understand 

retention and movement of water, because these phenomena are governed to a large 

extent by pore size and shape distributions. Large pores can conduct more water, 
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more rapidly than fine pores.  If we rely on the basic relationships between pore-size 

distributions, flow rales, and suctions, hydrau lic properties of soi ls can be calculated 

based on observed physical properties of soi ls .  However, measuring soil partic le  size 

and structure is much harder than experimental measurements of water content and 

water mo ements in soi ls .  Soi l is the loose surface of the earth consisting of sol id 

partic les, water and air. The solid partic l es are usually less than 2 mi l l imeters in 

diameter, and are categorized based on their diameter size.  We have sand which has a 

diameter of 0 .05 to 2 mi l l imeters silt  from 0.002 to 0.05 mi l l imeters, and clay less 

than 0.002 mi l l imeters. As a result, the texture of the soil depends on the relative 

proportions of sand, si lt  and c lay, and can be defined as a coarse or fine soi l .  For 

example, sandy loam is a coarse soi l ,  whereas c lay loam is  a fine soil [ 1 2] .  

1.6 WATER MOVEMENT 

In order for water to move from one point to another, two conditions must be 

met. First, there must be a difference in  hydraulic head between the two points, that is  

L1H which is  the difference or change in  total water potential between points in the 

soi l .  Second, the soi l between these two poin ts must be permeable enough to allow the 

movement of water [ 1 2, 2] . Hydraulic conductivity (K) is a measure of the abi l i ty of a 

soil to transmit water. The larger the K of a soi l ,  the greater wi l l  be the movement of 

water through it for any given hydraulic gradient .  Darcy's Law for l iquid movement 

in porous media states that the rate of water flow (q) through a given soi l segment is 

equal to the hydraulic conductivity of that  soil multiplied by the hydraulic gradient 

that exi sts in  that soi l .  Therefore, Darcy's Law is written mathematical ly as fol lows: 
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.:ill 
q = - K - , 

L (1. 10 ) 

where q is the flux, or flow rate in centimeters per hour or day; K is the hydraul ic 

conductivity in  centimeters per hour or day; iJH is the hydraulic head difference 

between two poin ts in centimeters; and L is the distance between the two points in 

centimeters [13]. 

A soi l has a maxImum K value when it is saturated (Ksal)' K values are 

characteristically different for different soi l s ,  depending upon soi l structure and pore-

s ize distribution. To i l lustrate this ,  we use the  diagram in Figure 1, i n  which soi ls  with 

different pore size distributions are represented by sets of capi l l aries of varying 

diameter. The sand contains relatively l arge pores, but the pores in the c lay are finer. 

At saturation, al l  pores are fil led with water. Large pores conduct much more water 

than fine pores.  When the pore radius is twice as large, for example ,  about sixteen 

times of more water can be conducted. I t  i s  c lear in Figure 1 there are much longer 

arrows from the larger pores than from the smaller ones [1, 12]. 
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Sat:ura"'ted Unsat:ura1:ed 

o Air-filled pores 
• Liquid-filled POI-CS 

Figure 1 :  Water Flow Difference [ 1 2] 

Sand 

Sandy 
loan,. 

Clay 

In addi tion, we notice that the sand is more penneable than the c lay at 

saturation, but the opposite is  true when the soi ls  are unsaturated.  The large pores, 

which resulted in a high hydraulic conductivity for the sand at saturation, become 

fil led with air as the soi l becomes unsaturated. More water-fi l led fine pores remain in 

the c lay. 

Moreover, the direction (upward, downward, or lateral) and magnitude of 

water flow in  soi l s  depends on the direction and magni tude of hydraulic head gradient 

and the degree of water saturation of the soi l .  As a result,  we see that there can be no 

flux of water (q) in soil wi thout both a hydraulic gradient �H and hydraulic L 

conducti vity (K). A soi l having a very high hydraulic conductivity wi l l  expenence 

l i tt le water movement if there is a very low hydraulic gradient.  On the other hand, a 
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high hydraulic gradient bet een two poin ts in  the soi l wil l  not cause water flow if K is 

es ential ly zero due to the occurrence of impermeable soi l between the two points 

[ 1 3 ] .  

1.6.1 Water Movement through Soil 

Water movement in  soi l is quite s imple and easy to understand, but at the 

same time it can be complex to be comprehended. It  is based on the concept that an 

object that can move freely, wil l  move impulsively from a higher potential energy 

state to one of lower potential energy, so is the case with water. A unit volume of 

water tends to move from an area of higher potential energy to one of lower potential 

energy [ 14 ] .  

o ownwa rd Flow 

Potential at top of soil is 
greater than at bottom. 

Figure 2: Downward Flow vs. Horizontal Flow 
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After applying water to the ground's surface. it e i ther evaporates into the 

atmosphere. or percolates into the soi l .  The way in which water moves through soi l is 

dependent primari ly on the properties of the soi l. the interaction between water and 

the soi l ,  the soil moisture gradient, and the c hanges in soil properties with depth. The 

size, numbers and continuity of soil pore spaces affect the rate of water movement 

and the distance that water can move. The spaces between sol id particles are pore 

spaces, which contain water and air. Even though a fine soil has smaller soil pores 

than a coarse soi l ,  it has a much greater n umber of pore spaces than a coarse soi l .  

Therefore, water tends to move more s low l y  through a fine soi l such as  c lay loam than 

through a coarse soil such as sand [ 1 4]. As water moves into the pore spaces, it 

displaces the air whi le  fi l l ing the pores wi th  water. If the pore spaces are blocked by 

entrapped air bubbles, the continuity of pore spaces to conduct water is broken. Thus, 

water movement is  reduced through these discontinuous pores.  Water movement 

through soi l pores is further influenced by the interaction of water with the sol id soi l 

particles, which are composed mainly of mineral materials and a smal l percentage of 

organic materials .  The water moving through the soil pore spaces is s imilar to water 

moving through a capi l lary tube. 

1 .6.2 How Texture Affects Water Movement through Soil 

Water general ly flows downward to deeper depths and from wetter areas to 

drier ones. This movement of water through soil occurs due to two forces;  first the 

downward pul l  of gravity and second the forces of attraction between water molecules 

and soil particles .  Just as gravity pulls all objects toward the center of the earth, it 

pul l s  water molecules downward through the soi l .  In sandy soi l s, this is  the primary 

cause of water draining downward through soil to groundwater. In c lay soi ls,  forces of 

attraction between soil and water molecules also play a key role in determining 
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movement of soi l water. Just as soil types vary in texture and structure, they also vary 

in their abi lity to conduct and hold water. Thus, soi l pore size is a significant factor in 

how water moves through soi l .  In genera l ,  water moves through large pores, such as 

in sandy soi ls, more quickly than through smal ler pores, suc h as in silty soi l ,  or 

through the much smal ler pores found in c l ay soi l [ 1 5 ] .  

1.6.3 Infiltration 

It is the movement of water into soil from the surface .  Water infi ltration is 

largely governed by the surface properties of the soi l .  A soil h igh in organic matter, 

having good structure, and has medium to coarse texture wil l  usual ly have a rapid 

infi l tration rate . Many other factors, such as water movement wi thin soi l ,  roughness 

of the ground surface ,  vegetative cover, and slope, wi l l  also affect infi l tration [ 1 6] . 

Water already in the soil profi le  must move downward before more water can enter at 

the surface .  Permeabi l i ty or hydraulic conductivity is  a term that describes the ease 

with which water moves within a soil. Permeable soi ls  conduct water readily through 

their mass. Other soi ls  may conduct water slowly or have restricting layers or 

horizons which l imit or prevent downward movement of water. Soi ls  or soil layers 

which do not conduct water, at a l l ,  are termed impermeable .  Permeabil i ty, hke 

infi l tration, is largely determined by texture,  structure, and organic matter content 

[ 1 4] .  
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1.7 SATURATED VS. UNSA TURATED FLOW 

1 .7.1 Un atu rated water flow 

When the soil pore spaces are partial ly fi l led with water, the soi l is 

unsaturated. Unsaturated water flow is sl ow, and occurs mainly by adjusting the 

thickness of water fi lms, or capi l lary water that surrounds the soil partic les.  Water in 

unsaturated soil tends to have little movement. The soil moisture gradient, which is 

the difference in tbe water content from one soil zone to anotber, is  the driving force 

for unsaturated water flow. Water flows from pores in wetter soi l zones to pores in 

drier soi l zones.  Water under unsaturated conditions can move downward, 

horizontal ly or upward, depending on the posi tion of the drier soi l zone in re lation to 

the wetter soil zone [ 1 7] .  

1 .7.2 Saturated Water Flow 

Soil is considered saturated when all pore spaces are fi l led with water. 

Saturated water flow is ratber rapid, and occurs main ly  by draining the gravi tational 

water occupying the pore spaces between the soil particles .  The size of the soil pores 

is the main influence on saturated water flow. Like a capi l lary tube, the soil pores 

should be continuously connected to each o ther in order to form a conduit for water to 

move through the soi l .  Coarse soi l bas larger pores, enabling it to conduct saturated 

water flow faster than fine-textured soi l .  Gravitational forces are the main driving 

force for saturated water flow . The direction of saturated water flow is usually 

downward. Horizontal or lateral water flow in soil under saturated conditions occurs 

slowly because the force of gravity doesn't assist horizontal water flow. Upward 
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saturated water flow is very l imited because the force of gravity holds back the 

upward flow [ 1 7 ,  1 8] .  
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2.0 OBJECTI VES AND LITERATURE REVIEW 

Many environmental and engineeri n g  problems can be characterized by a fluid 

flo through porous channels with different permeabi l i ty .  Examples of these flows 

are the oil flow through ground layer and the flow of underground water. 

The main objective of this work is to study the fl uid mechanics of multi layer flows 

(More than two layers). The problem of the two layers flows was investigated by 

several authors [20, 2 1 ] .  Beavers and Joseph [ 20] considered the interface region 

between a porous media and a fluid layer. They presented a description of the veloci ty 

gradient using an empirical data that depends on the veloci ty in the fl uid layer and the 

porous region . 

Later Vafai and Thiyagaraja, [ 22] showed that the idea of Beavers and Joseph is true 

only for the l inear regime. While Vafai and Kim [23] studied the fluid mechanics of 

the interface region between a porous medium and a fluid layer, and derived an exact 

solution for the velocity. Al lan and Hamdan [24] studied the fluid mechanics of the 

interface region between two porous media, and an exact sol ution was also obtained. 

Solbakken. and Andersson [25] studied the lubricated plane channel by means of 

direct numerical simulations.  Their results indicate that the veloci ty at the interface 

region of the lubrication plane plays a very significant role in the development of 

turbulent flow. 

Lemos [ 26]  considered a channel partial ly fi l led with a porous layer through which an 

incompressible f luid flows in turbulent regime.  At the interface, a j ump conditions are 

assumed and numerical simulation were used to investigate the veloci ty field.  The 

results obtained indicated that the fl u id  flow depends heavi ly on the velocity 

distribution at the interface . 

Specifical ly the obj ecti ves of this work are : 
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1 .  Developing the mathematical model that describes the flow through each 

regIOn. 

2 .  Specifying the in itial and boundary conditions for each region. 

3.  Developing the interface conditions for each region. 

4.  Solving the governing equations e i ther numerically or analytical ly .  

5 .  Study the effect of the two parameters, the Reynolds number and the Darcy 

number on the veloci ty at the interface region. 
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3.0 MA TERIA L S  AND M E T HODS 

The methodology of  the suggested work i s  consistent with the research goals.  I t  i s  

divided into the fol lowing series of  work: 

• Literature Review 

The l i terature review associated with the physical and mathematical 

formulation of the problem was reviewed, and the previous work was also 

presented. A detailed appl ication of the problem was also investigated. 

• Problem Formulation 

The developed mathematical models  of the problem were implemented 

using Mathematica. In  addition, a suitable boundary and initial conditions 

were chosen so that the problem is wel l  posed and exact solution is therefore 

possible. 

• Sol ution Techniques 

The method of solution of the problem under consideration was presented.  

And as expected an exact solution for the system of equations describing 

the problem was obtained. 
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• Computer Program 

Mathematica was used to wri te the required programs. Two Mathematica 

programs were developed to solve the non l inear system of equations 

where the unknowns were the velocities at the interface region . A 

comparison between the results of the two programs was later made to find 

which method is more efficient .  
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4.0 M A THEMA TICAL MODELLING OF FLUID FLOW 

I N  POROUS MEDIA 

4.1 S i mple  Mathematical Model 

4.1 . 1  Fluid Flow th rough a channel of fini te depth 

A simple mathematical model describing the fluid flow through channels 

which has fin i te depth is presented along w ith suitable boundary conditions. An exact 

sol ution is obtained for various settings of the flow; including the existence of two 

l ayers of flows with di fferent veloci ties, and the existence of porous media in one of 

the sides of the channel [27 ] .  In thjs model ,  the attention was devoted to the 

discussion of several cases where exact solutions can be obtained. 

First of all ,  flow through a channel of fini te depth is  investigated where 

paral le l  flow occurs. A flow is paral le l  if only one velocity component is different 

from zero that is al l fluid particles are moving in one direction. For example if the 

velocity components are u, v and w and if the components v and w are zero 

everywhere , it fol lows at once from the equation of continuity that 
au 

== 0 ,  which 
ax 

means that the component u cannot depend on x . Thus, for paral le l  flow we have : 

u = u (y, t )  ; v == 0 ; w == 0 , (4 .0) 
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Furthennore, from the avier Stockes the pressure for the y and z directions of the 

pressure p, we have 

(4.1) 

(4 .2) 

In th is  case, the pressure depends on x only.  Add to that, a l l  the convective tenns 

vani sh in the equation for the x direction, so we have: 

(4. 3) 

And this is a linear differential equation for u(y, z, t) which a simple sol ution can be 

obtai ned for the case of steady flow in a channel with two parallel flats wal l s .  By 

making the distance between the walls to be 2H, the former equation 

becomes: 

(4.4) 

With boundary condition u = O for y = + H or - H .  

Since 
ap =0 ,  the pressure gradient in the direction of flow is  constant, as seen from 
az 

equation (4.4). Thus, if [�): = a , which is a constant, the sol ution for Eqn. (4.4) 

together with the above boundary condi tions wil l  be : 

1 2 2 u = (--)a(H - y ) , 
2 

(4.5) 

Figure 3 shows the velocity profi les for the flow through a c hannel for various values 
of u. 
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Another s Imple sol ution can be obtained to equation (4.4) known as Couette 

flow between two paral lel  flat walls where one of the them is at rest and the other is 

moving in its own plane with a veloci ty U while having the fol lowing boundary 

condi tions: 

U (0)=0 ,  and u (H )= U ,  

We obtain the sol ution which i s  shown in  figure 3 ;  

Y H 2  Y Y u = (-)U - (-) Re c(-)(l - -) H 2 H H '  

4.1 .2 Fluid flow through a two layer channel 

(4.6) 

In addi tion, if an imaginary interface is p laced at the l ine y = O ,  and parallel to the 

flow field then one has to worry about the interface veloc i ty .  In thi s case, additional 

boundary conditions are needed. Assume that two fluids with di fferent veloc i ties are 

flowing at the two layers of the channel as shown in Figure 4. A ssume further that the 

fluid flow in the two regions are governed by: 

d:lI; 
= Re c, for i = 1, 2 , 

d - y  . (4.7 ) 

Then the additional boundary condition for the veloci ties at the interface wi l l  be:  

which means that the veloc i ty is  continuous. In this case the exact solution is given 

by: 

(4.8 ) 

And 
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Re c y Re c )1 2 
II (Y ) = lI - 2 + U }' _ 2 .  2 lOt 2 I 2 ' (4 .9) 

To solve for u IOt '  an additional condition is  needed which is given by the smoothness 

of the veloc i ty :  

dU I  (0) = dU 2 (0) 
dy dy 

Using this condi tion and sol ving for u leads to the fol lowing value : lOt 

II = 
Re ci + Re c2 

(4. 1 0) lOt 4 

Figure 5 shows the velocity profiles for different values of Rec )  and Rec2. 

4. 1 .3 Fluid flow through a two layer porous media 

ow, consider another case that i s  s imi lar to the one above where a barrier is 

placed at the l ine y = 0 [27] .  Let us assume that the upper region i s  governed by 

equation (4.4) and the lower region is governed by : 

d 2U U 
Rec 1 + --1 _ __ I = 0  

d " D ' 
y - � 

(4. 1 1 ) 

Where quantities have been rendered dimensionless wi th respect to the characteristic 

length H, and the characteristic velocity UXl, using the definitions :  

Then the conditions at  the interface region wi l l  be :  

du (0)= 
dU I (0) 

dy dy 
(4. 1 2) 

Solving equations (4.4) and (4. 1 1 ) subject to (4. 1 2) leads to the fol lowing sol utions :  
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Re e l )' u (y) = u1nl + 
2 

e io;; [ Da{ - 1  + e in.. )( - 1  + e k. ) Rec 1 - ( 1 + e � } '"' ) 
U ICy ) = - --�-�------=--�----=-2 ----=-__ --2-__ ____=__� 

- l + e JDaT 

(4. 1 3) 

Condition (4. 1 2) can now be used to find the value of u ml and it is found to be of the 
form : 

,JDai ( - 1  + e To,;; )( 1 - 2,JDai + e  *' + 2 rv;;1e io:r ) Ree l 

umt = 

( 
) 2 1 - JDal + ek + JDale k 

Figure 6 shows the veloci ty profi les for different val ues of Da l whi le Rec 1 = 1 0  
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Figure 3 :  Veloci ty profiles for the flow through a channel for various values of Ree l .  
e 0 interface region) .  

Figure 4: Schematic diagram for the two-layer flow through a channel of depth H .  

Region 1 

. terlac e !"egion ---------------------

Region 2 
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Figure 5: Velocity profi les for the flow through a mul ti- layer channel for various 
values of Rec:! and Rec i 

Figure 6: Veloc i ty profi les for the flow through a two-layer channe l .  The lower layer 
represents fluid flow through a porous media.  Results are for various val ues of Da 1 
and for the value of Rec l = l O  

:D a.l=l  0 0 

- 0 . $  o _ �  l 
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5.0 NUMERICAL METHODS 

5. 1 A M ore Compl icated Mathematical Model 

A two dimensional shooting method is well  known and applied to solve 

coupled non l inear second order boundary v alue problems. The coupl ing i s  manifested 

by common boundary conditions at the i n terface. Examples for which the exact 

solutions are known are used to verify the accuracy validation of the algorithm . 

Differential equations play an important role in many fields of science and 

engineeri ng.  They model many important physical phenomenons .  These di fferential 

equations can be ordinary or partial ,  l inear or nonl inear. The exact solution of many 

differential equations is not easi ly obtainable. For this reason, researchers have 

developed numerical schemes to approximate their solutions.  The general second 

order boundary value problem takes the fonn: 

y " (x )=  f (x , y , y') ,  a 5: x5:b , y (a ) = a , )  (b)= /3 ( 5.0) 

where primes denote differentiation with respect to x .  

However, two coupled boundary value problems are more of a concern more 

precisely numerical ly solving the fol lowing two problems: 

, " ( ) - f ( '
) < <b Y x - x , y , y , a _ x_  , 

and 

z " (x)= g (X , : , Z ' ) ,  b 5:x5:c  

(5.1 ) 

(5.2) 

Where f and g are continuous and differentiable functions, with the fol lowing left and 

right boundary condi tions :  

y (a)= a, z. (c)=/3 (5. 3) 

and the interface condition 
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Y (b - )= :: (b � ) , )" (b - ) = z ' (b · ) (5 .4 ) 

The shooting method solves the two problems separately as initial alue 

problems in their domains with the missing conditions y'(a) and z'(c) are set of two 

parameters t and s,  (Y ' (a )=t , - ' (c )= s ). This wil l  result in a system of two nonlinear 

equations in the two unknowns t and s. The two dimensional ewton's method i s  then 

used to solve for t and s. 

The fol lowing is a review of the n on l inear shooting method for second order 

nonl inear boundary value problems and the deriving of the two dimensional shooting 

method to solve (5 . 1 )  and (5 .2) subject to ( 5 .3) and (5 .4) i s  presented. 

Consider the nonl inear ODE: 

Y" (x)= f (x , y y ') , a 5, x5,b 

with boundary conditions 

(5 .5 ) 

(5 .6 ) 

The non l inear shooting method solves (5 . 5 )  as an initial value problem, i . e . ,  solves 

y" (x)= f (x . y , y ') , a � x5,b  (5 .7 ) 

with init ial conditions 

y(a )= a ,  y ' (a)= t ,  (5 . 8 ) 

where t is an appropriate parameter so that the sol ution to (5 .7) and (5 .8 ) ,  denoted by 

y (x , t ) ,  satisfies the boundary condition ( 5 .6) at x=b ,  i .e . ,  y (b , t )=/3 . In order for 

(5 .6) to be satisfied, the parameter t has to be the zero of the function y (b , t )  - /3. 

However, the solution y (x ) i s  not known. In implementation, one solves a sequence 

of (5 .7-5 .8) with t = tk until the l imit  of y (b , tk ) -/3 as k goes to infini ty near zero. 
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In pJred by the shooting method for second order nonl inear ODEs. we derive a two 

dimensional shooting method for coupled nonlinear second order ODEs as follows. 

Consider the two ODEs: 

y " (x)= f (x , y , y ') a � x � b ,  y (a )=a (5 .9  ) 

" " (x)= g (x . z , d, b � x � c ,  z (c)= fJ (5 . 1 0) 
Where f and g are continuous and differentiable functions with respect to their 

variables. 

The interface conditions (coupl ing conditions)  are 

(5 . 1 1 ) 

To solve the above problem, we sol ve the two initial  value problems: 

)' ' ' (x)= f (x , y , y ' ) ,  a � x�b ,  y (a )=a , Y ' (a )= s (5 . 1 2) 
and 

, , ( -)- ( 7 ') z x - g x , Z , ,,- , (5 . 1 3) 

For y(x s)  a � x  �b ,  and for z (x , t ) ,  b�x�  c .  The parameters s and t are to be 

determined such that (5 . 1 1 ) is satisfied, i . e . ,  

y(b- ; s ) - �(b+ ; t )=O 
y ' (b - ; s )  - z ' (b+ ; t )=O (5 . 1 4) 

To determine s and t, we regard (5 . 1 4) as a nonlinear system of two equations of two 

unknowns, then the two dimensional Newton's method is used [28,  29] . 

For the fol lowing example whose exact solution i s  known,  we apply the 

algorithm described above to validate its accuracy. 
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Consider the following two problems: 

" ,1 1 ,  x 1 5  ( )  ( )  3 
v = - v - - - )' - )' - - + - + In x 1 :S; x :S; 2 v I  =-- - 2 4 1 6 ' ' - 4 ' 

and 

with interface conditions at x = 2 ,  

(5 . 1 5 )  

(5 . 1 6) 

(5 . 1 7) 

It can be verified that the exact solutions to the above problem (5 . 1 5 )  and 

(5 . 1 6) are: 

1 7, (X) =_+  In(x) , 
x 

(5 . 1 8  ) 

(5 . 1 9 ) 

Applying the algorithm, we solve in order the following initial value problems: 

And 

z" = z'+ 2(z -ln(x))3 -� , (5 . 2 1) 
x 

Then using the obtained solutions of (5 . 20),  y(x; tk ) , y ' (x; tk ) , 1 :S; x :S; 2 ,  and of (5 . 2 1 ), 

" 2 I I 1 , , U =- )' U --u  -u  
2 

' 

And 

u" = v' +6(z - In x )2 V, 

1 :S; x :S;  2, u (l)=O, u ' (l)= l (5 . 22) 

(5 .23) 
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For U(X; lk )' u ' (x; tk ) ,  V(X; Sk ) ' V' (X; Sk ) '  

From which u(2; tk ), Ll ' (2; r,, ) v(2; Sk ) '  v ' (2 ; Sk ) are used i n  the calculation of the 

Jacobian matrix and i ts inverse to update tk and Sk . 

The same algorithm is applied to solve a two layer flow problem Consider 

flow through a channel composed of two different porous layers [28] . 

The upper layer i s  bounded above by a sol i d  impermeable wal l corresponding to 

y = 1 ,  and the lower layer is bounded below by a solid impermeable wall 

corresponding to y = - 1 . The y = 0 ,  corresponds to the interface region . Two 

combinations of models wi l l  be considered when simulating. First, when both layers 

are modeled by the same model the Darcy-Lapwood-Forchheimer-Brinkman (DFB ) 

or the Darcy-Lapwood-Brinkman (DLB) model . Second, the two layers are modeled 

one by the DFB model and the other by the DLB model .  For each combination, 

different values of permeabi lity values are considered. 
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Figure 7 : Configuration of the two porous layers: 

Up:)!':r ",o-U:S DOUrC 3it't/ 

-
, �  

Case 1 :  The DLB-DLB combination 

The flow in both layers is  governed by the DLB model ,  where Re is  the Reynold 

number, and C is a dimensionless pressure gradient: 

U u" = Re C + - ,  

k b 

" R C u u = e + - , 
k t 

- 1 :S;  Y � 0, y(- I )=O  

o � y � 1, y(l )=O  

(5 .24) 

(5 .25 ) 

With the interface conditions £1 (0- )= £1 (0 + ) and u , (O- )=u , (O+ ) . The permeabi l i ties are 

denoted by kb and k, for the lower and upper layer respectively. 

Equations 5 . 24 and 5 . 25 are linear, and their exact sol utions can be easi ly found. But 

we are interested in applying the algori thm discussed above. 
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Figure 8 :  Case 1 :  Flow veloc i ty profi les for both layers, with kt = 1 and kb = 

0.005 ; 0.0 1 ;  0. 1 ;  1 ;  10; 1 00. Re = 1 0; C = - 1 0; Lower graph corresponds to smal ler 

kb. 

- 1  - 0 . s; o . s; 1 

Case 2: The DLB-DFB combination 

The flow in the top layer is governed by the DLB model ,  and the lower layer i s  

governed by the DFB, the governing equati ons are : 

" R C U U = e + - , 
k b 

- l � y � O, y(- l )=O (5 .26) 

And 

" U RCd 2 U = Re C + - + -- u 
k, Jkr 

(5 .27 ) 
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Figure 9 :  Case 2: Flow veloci ty profi les for both layers, with kt = 0. 04 and kb = 

0. 008; 0. 0 1 ,' 0. 02; 0. 04,' 0. 06; 0. 05,' 0.03; 0. 1 .  Re = 1 ,' C = - 1 ,' Cd = 0. 055 .  

1 . 07 
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5.2 FINITE D I FFERENCE APP ROACH 

The fin i te di fference method for the linear second order boundary value 

problem, 

y" = p(x)y'+q(X) Y + rex), a ::; x ::; b, y (a) = a, y(b) = /3, (5 .28) 

requires that difference quotient approximations be used to approximate both y' and 

y " .  First, we select an integer N > ° and divide the interval [a, b] into (N+ l ) equal 

ubin tervals whose endpoints are the mesh poin ts x, = a + ih for i = 0, 1 ,  . . . . .  , N + 1 , 

where h = b - a . Choosing the step s ize h in this manner faci l i tates the appl ication 
N + 1  

of a matrix a lgori thm which sol ves a l inear system involving an N X N matrix [29] . 

At the in terior mesh points, x, ' for i =O, I, . . . . .  , N ,  the differential equation to be 

approximated i s :  

y" (X, ) = p(x; )y' (X, )+q(x, )y(x, )+ r(x, ), (5 . 29 ) 

Expanding y in a third Taylor polynomial about Xi and evaluated at XI+ I and 

XI- I ,  we have, assuming that yE C4 [XI _ I , XI + I] , 

V" (XI) = J, [ y(xl + I ) - 2y(xl )  + y(xl _ I )] _ � y4 (�/ )' . h - 1 2  
(5 .30 ) 

for some �, i n  (X,_I ' x,+I ). This is cal led the centered difference fonnula for y" (  XI ) .  

Then a centered difference formula for y'( xl ) i s  obtained in a simi lar manner resul ting 
ln,  

V' (XI ) = _1 [ y(xl + I ) - y(xl - I) _ h
" 

y" ' (T7, ) - 2h 6 
(5 .3 1 )  
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for some '7, in (X,_I ' XI+I ) .  

The use of these formulas in Equation (5 .29) results in the equation : 

Y(XI + I) - 2y(xl )  + Y(XI - I )  [ Y(XI T I )  - Y(XI - I ) J -'-----'------=--
h
-=-2 --'---=--:'--'- = P (XI ) 

2h 
+ q (XI ) Y (XI ) 

+ r(xl )  -�� [2p(xl ) y' " ('7, ) - l (�, ) J ,  (5 .32) 

Define \\'0 = a ,  WN+I =/3 

And 

1 + 1 I 1-1  +p(x ) 1 + 1 I -I + q(x )W = - rex ) ( - w + 2 \V . - WW ) ( w - w ) 
11 "  I 2h I I I ' 

Rewrite this to get, 

(5 .33) 

(5 .34) 

And the resulting system of equations is expressed in  the tridiagonal N"X,N matrix 

Aw=b, 

Which i s  a nonlinear system that can be solved by any i terative scheme for the 

unknowns Wi.  
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5.3 THE NON LINEAR SHOOTING METHOD 

The shooting technique for the nonl inear second order boundary value 

problem 

y" = I (x, y, y' ) ,  a � x � b, yea) = a, y(b) = (J, (5 .35) 

i s  s imilar to the l inear technique except that the solution to a nonlinear problem can 

not be expressed as a linear combination of the solutions to the two initial  value 

problems. Instead, we approximate the sol ution to the boundary value problem by 

using the solutions to a sequence of init ial  value problems involving a parameter t. 

these problems have the form 

y" = I (x, y, y ' ) ,  a � x � b, y(a) = a, y ' (a) = t , (5 .36) 

We do this by c hoosing t = t k ' in a manner to ensure that the I imit of y (b, t k ) 

as k goes to infin i ty equals y(b )= {J , where y (x, tk ) denotes the solution to the in i tial 

value problem (5 . 36) with t = fk ' and y(x) denotes the solution to the boundary val ue 

problem (5 . 35) .  

Thi s technique i s  cal led shooting method, by analogy to the procedure of 

firing objects at a stationary target .  We start with a parameter to that determines the 

init ial  elevation at which the object is fired from the poin t  (a, a) and along the curve 

described by the solution to the initial value problem (5 .36) .  

44 



If y(b, co ) i s  not sufficiently close to p, we correct our approximation by choosing 

elevations tl ' t 2 , and so on unti l y(b, lk ) is sufficiently close to hitting p [29] . 

We next determine t with 

y(b, t ) - fJ = O  

Thi s  i s  a non linear equation and there are many methods avai lable to solve i t  

such as the secant method. We j ust need to choose initial approximations to and t 1 , and 

then generate the remaining terms of the sequence by 

(y(b, lk - 1 ) - /3)(lk - 1 - lk - �)  tk = tk - 1 - , k = 2,3, . . . . .  y(b, £k - 1 )  - y(b, tk - ") 
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6.0 Fluid Flow through Mu lti layer of Finite Depth 

In this section, we shal l present the mathematical formulations of the models 

equations governing the three channel problem, where the middle region i s  of fin i te 

width H ,  and the upper and lower regions are of fin i te heights . The mathematical 

formulations govern the flow of viscous fluid through porous media. The flow 

through porous media has typically been described by Darcy's law which is only 

suitable for s low flow through low permeabi l i ty media. Also, it ignores many physical 

attri butes such as inertial effects and the viscous shear effects . When dealing with 

viscous fluid flows and high permeabi l i ty medium, Darcy's law becomes not valid and 

other flow models  which account for these effects have to be adopted. Two popular 

models are knowns as Darcy-Lapwood- B rinkman (DLB ) and the Darcy-Lapwood-

Forchheimer-Bri nkman (DFB ) models .  The DLB model is suitable when viscous 

shear effects are important and macroscopic  inertia is sufficient to describe the flow 

inertia through the porous materia l .  The DFB model accounts for viscous shear 

effects,  and describes both microscopic and macroscopic inertia in the medium. The 

flows described by these models are encountered in various natural ,  physical,  

biological ,  and industrial settings. 

If we assume that the flow i s  planar, ful ly developed and driven by a constant 

pressure gradient, then, in dimensionless form, the governing equation for the DFB 

model i s  

(6.0) 
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Where u (y ) , - 1  � Y � 1 ,  is the veloc i ty of the fluid, and the various parameters in 

(6.0) are defined in terms of physical parameters as fol lows. 

• Re = pU _ L  is the Reynolds number with p is the fl uid density, Uoo is the 
Jl 

free stream c haracteristic veloc i ty,  �l is the fluid viscosity, and L i s  the channel 

characteri stic length . 

• K i s  the permeabi l i ty of the porous channe l .  

• Cd is the fonn drag coefficient .  

• C < 0 is a dimensionless pressure gradient. 

When Cd = 0 , we obtain the DLB model equation 

d 211 = Re C +!!.-
dy '2 k ' (6 . 1 ) 

In this work, we consider flow through a channel composed of three different 

porous layers . The upper ( lower) layer is bounded above (below) by a sol id 

impermeable wal l ,  corresponding to y = - 2 and y = 1 .  The y = 0 and y = - 1  

correspond to the i nterface region . Since the upper (lower ) layer i s  bounded above 

(below) by sol i d  impermeable wal l ,  a no slip condition is valid to assume, that is ,  

u = 0 at the sol id boundaries y = - 2 and y = 1 .  At the interface between the three 

layers along y = 0 ,  - 1 , we assume that the veloc i ty and shear stress are continuous. 

Thi s  assumption is real istic and makes it possible to determine the fluid veloci ty at the 

interface.  
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Then we apply the fini te difference method to solve the three layer flow 

problem. The solution is approximated at grid point Y" and the solution u (O) , and its 

derivative u ' (O) , at the interface are later approximated to be compared with the 

imulation results of the non l inear shooting method. 

_ _ _ _ _ _ _ _ _ _ _ _ In�r1"c:'" =;1 em _ _ _ _ _ _ _ _ 

Figure 1 0: Configuration of the three layer problem. 
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7.0 RESULTS A N D  DISCUSS I O N  

For our problem, w e  assume that the flow is planar, fully developed, and 

driven by a constant pressure gradient .  We consider the flow through a channel which 

is compo ed of three different porous layers . The flow through the layers i s  governed 

by two different  flow models .  The upper and lower layers are bounded by sol id, 

impermeable wal ls  on which a no slip condi tion i s  val id. Near the sol id walls, strong 

viscous shear effects are present, and hence one must choose a flow model that i s  

compatible wi th the presence of macroscopic solid boundary. The interactions 

between the fl uids in  the three layers of the channel take place at the interface regions 

between the porous layers. As a result ,  there will be a discontinui ty in the 

permeabi l i ty at the i nterface due to the a ssumption that the interface between the 

layers is sharp. In addition, across the interface, the momentum transfer and shear 

stress effects are transmitted from the faster flow region to the slower flow region . 

However, i t  i s  assumed that the velocity and shear stress are continuous along the 

interface which makes it possible to determi ne the fluid veloc ity at the in terface .  

The OFB (Darcy-Lapwood-Forchheimer-Brinkrnan) model is  known to  be 

compatible wi th the presence of a macroscopic boundary. As a result, we choose the 

OFB flow model to govern the top and bottom layer. Then, the governing equation for 

the OFB model for the top and bottom layer i s :  

(7.0) 

Where u (y) , - 2 � y � - 1 and 0 � y � 1 , is the velocity of the fluid and the 

various parameters in (7.0) are defined as fol lows:  
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• Re = pU _L is the Reynolds number with p is the fluid density, Drt, is the free 
JL 

stream characteristic velocity, )l is the fluid viscosity, and L is the channel 

characteristic length. 

• K is the permeability of the porous channel. 

• Cd is the form drag coefficient. 

• C < 0 is a dimensionless pressure gradient. 

The flow in the middle layer is governed by the DLB (Darcy-Lapwood-

Brinkman) model which has the following governing equation: 

u 
u" = Re C  + - , -1 � )' � O ,  

km 
(7.1) 

where km is the permeability associated with the middle layer. The permeabilities 

are denoted by kl and kb for the upper and lower layers respectively. The 

boundary conditions associated with the configuration above are as follows: 

• Conditions along the solid walls: the no slip condition is employed at the 

solid walls, thus 

u (- 2) = 0 ,  and u(l) = 0 
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• Conditions at the interface, y = 0 and y = - 1  : the veloci ty and shear 

stress are continuous at the interface between the layers, and thus 

u ( o+ ) =  u ( O- ) 

ll ' ( O+ ) = u ' ( O - ) 

U (_ 1 T ) =  ll (- l - )  

u ' (- l + ) = u ' (- l - ) 

The solutions ha e been obtained for the flow through the top and bottom 

layers which are governed by the DFB model and through the middle layer which is 

governed by the DLB mode l .  They have been obtained after applying the non l inear 

shooting method and the finite difference method for comparison purposes. We ran 

the simulation for 3 different cases, where in every case we had different values for 

the permeabil ities of the three layers. The resul ts of the simulation to the three cases 

by both methods the shooting method and the fin i te difference method are shown in 

figures 5 through 1 0  below. Tables 3, 4, and 5 l ist  the flu id interface veloc i ty 

obtained by the non l inear shooting method and by the fin i te difference method 

scheme. 
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Table IV  : Case I of the comparison between two methods : The 

interface velocities for the alues :  Kb= 0. 1 ,  Kc= 0.2,  Kt= 1 0, a = -2, b= l c l  = - 1 ,  

c 2  = 0, R = 1 C = - 1  Cd = 0 . 1 

Fi nite Shooting Method Difference 
Difference 

U(m) 0. 143945 0. 14309 1 0.000854 
U(2m) 0.278743 0.277 124 0.00 16 19 

Table V : Case I I  of the comparison between two methods : The 

interface velocities for the values :  Kb= 0. 1 ,  Kc= 0. 1 0, Kt= 1 0, a = -2, b= l ,  c 1  = - 1 ,  

c 2  = 0, R = 1 ,  C = - 1 ,  C d  = 0 . 1 

Fin i te Shooting Method Difference 
Difference 

U(m) 0.0994792 0.099396 0.0000832 
U(2m) 0.1 94545 0. 19261 0.001935 

5 2  



Table VI : Case I I I  of the comparison between two methods : The 

interface veloci ties for the values: Kb= 0 .5 ,  Kc= 10, Kt= 0. 1 ,  a = -2, b= l ,  c 1  = - 1 ,  

c2 = 0, R = 1 ,  C = - 1 ,  Cd = 0. 1 

Finite Shooting Method Difference 
Di fference 

U(m) 0.458824 0.458096 0.000728 
U(2m) 0.286518 0.292454 0.005936 
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Iter. = 7 

0.20 

0 . 15 

0 . 10 

0.05 

-2.0 - 1 .5 - 1 .0 -0.5 0.5 l .0 

E_b = - 10  
2.82029 10  

Figure 1 1 : shooting method: With Kb= 0. 1 ,  Kc= 0 .2 ,  Kt= 1 0, a = -2 ,  b= l ,  c l  = a + 
(b-a)/3, c2  = a + 2(b-a)/3 

0.30 r 

0.20 

0.1 5  

0.1 0  

0.05 

-2.0 - 1 .5 - 1 .0 -0.5 0.5 1 .0 

Figure 1 2: fin i te difference method: With Kb= 0. 1 ,  Kc= 0.2,  Kt= 1 0, a = -2 b= l ,  c 1  = 
a + (b-a)/3, c2  = a + 2(b-a)/3 
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Iter. = 7 

.1 5 

0. 10 

0.05 

-2.0 - l .5 - 1 .0 -0.5 0.5 1 .0 

E_b = -10 

4.3325 1 10  

Figure 13 :  shooting method: With Kb= 0. 1 ,  Kc= 0. 1 0, Kt= l a, a = -2 ,  b= l ,  c l  = a + 

(b-a)/3 , c2 = a + 2 (b-a)/3, R = 1 ,  C = - 1 ,  Cd = 0. 1 

. 1 5  

0 . 10  

0.05 

-2.0 - 1.5  - 1 .0 -0.5 0.5 l .0 
Figure 1 4: Finite difference method: Kb= 0. 1 ,  Kc= 0. 1 0, Kt= 1 0, a = -2, b= l ,  c l  = a 
+ (b-a)/3, c2 = a + 2(b-a)/3, R = 1 ,  C = - 1 ,  Cd = 0. 1 
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Iter. = 20 

0 .5 

0.2 

0 . 1  

-2.0 - 1 .5 - 1 .0 -0.5 0.5 1 .0 

E_b = - 10  

4. 1 2895 1 0  

Figure 1 5 :  shooting  method: With Kb= 0 . 5 ,  Kc= 1 0, Kt= 0. 1 ,  a = -2, b= l ,  c 1  = a + (b
a)/3, c2 = a + 2(b-a)/3 

0.5 

0.4 

0 . 1  

-2 .0 - 1 .5  - l .0 -0 .5 0.5 l .0 

Figure 1 6 : Finite difference method : With Kb= 0 .5 ,  Kc= 1 0, Kt= 0. 1 ,  a = -2, 
b= l c 1  = a + (b-a)/3 , c2 = a + 2(b-a)/3 
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The results of applying the shooting method to the three layer flow problem show 

that the algori thm is more efficient and more accurate than the fin i te difference 

method. In particu lar, we note that, in all cases, the interface veloc i ty and shear stress 

values obtained by the fi nite di fference approach tend to the values obtained by the 

shooting method. This  demonstrates that the  shooting method gives a better resolution 

at the interface .  The results show that the ve locity profi le is simi lar in al l  three cases.  

For the parameter values considered i n  this work, the convergence of Newton's 

method was very fast. In  all cases considered, convergence was achieved in first and 

second case in 7 i terations and for the third case in 20 i terations .  On the other hand, 

the finite difference method was time consuming as i t  has to handle a large system.  
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C HA PTER EIGHT 

8 .0  ENVI RONMENTAL I MPACT 

Porous materials are encountered l i terally everywhere in everyday life ,  in  

technology, and in  nature . Many natural substances such as  rocks, and biological 

tissues such as lungs and bones, and man made materials such as cements, foams and 

ceramics c an be considered as porous media. More examples of porous material 

incl ude soil, bui lding materials such as bricks, concrete, l imestone, and sandstone. 

The concept of porous media is used in many areas of appl ied science and 

engineering .  I t  i s  used in mechanics such as geo-mechanics, soi l and rock mechanics, 

in engineering such as petroleum and construction engineering, in  geosciences such as 

hydrogeology and geophysics, in biology and biophysics, in material sciences, and 

many more fields of science. However, the most important areas of technology that 

depend s ign ificantly on the properties of porous media are hydrology, which re lates to 

water movement in earth and sand structures, petroleum engineering which is mainly 

concerned with petroleum, and natural gas production, exploration, well  dri l l ing, and 

logging. Additional ly, the flow of blood and other body fluids, and electro-osmosis 

are few examples where porous media plays a critical role in medicine and biological 

engi neering .  

Consequently, flow through porous media has become an important 

environmental problem that had attracted the attention of many scientists . It has many 

environmental impl ications in several areas such as the study of pollution, fate of 

contaminants, contaminations issues re lated to agricul ture, civi l  constructions, coastal 

management, and flow of ground water, oil and gas in the ground layers are also 
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typical problems. In addition, flow through porous media finds agricul tural 

appl ications in irrigation processes and the movement of nutrients,  ferti l izers, and 

pol lutants into plants Fluid flow through porous media has emerged a separate field of 

study because it is a subject of most common interest. 

Differential equations play an important role in many fields of science and 

engineering. They model many importan t  physical phenomenon. In Fact, fluid 

mechanics of the interface region of multilayer flows has gained interest over the past 

three decades due to i ts applications in various physical settings .  These appl ications 

include packed bed heat exchangers, heat pipes thermal insulati on petroleum 

reservoirs nuclear waste reposi tories, and geothermal engi neering  [ 1 ] , 

In general, petroleum products represent a dangerous potential source of 

groundwater pollu tion and sediment contamination due 0 the toxicity of a number of 

the oi l components, such as benzene toluene, ethylene and xylene. These can reach 

the water table through various pathways, inc luding highway runoff, direct oi l spi l l s 

resulting from road accidents, wave washing of oi l spi l led in coastal waters, and the 

improper disposal of hydrocarbon products through urban sewer systems.  

Due to the costly c lean up processes of oi l contaminated sediments, i t  is 

imperative to predict the outreach of oi l components, their motion in the sediment, the 

physical and chemical behavior of the redistributed oi l and how the oi l  components 

reach the water table .  A l arge volume of work, both theoretical and experimental , has 

been carried out in this fie ld  in recent years and has been centered around a single and 

mul tiphase flow through porous media [2 ] .  
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For example, organic tissues are porous media permeated by organic liquid. 

They are made of packed ce l ls  which constantly absorb organic material and nutrients 

from the liquid environment outside them to feed, grow, and duplicate. On the other 

hand, they constantly produce waste prod ucts, mainly water, and a multi tude of 

chemical factors . At the end, when cel ls d ie ,  their membrane ruptures releasing their 

content and in particular re-usable organic materials .  One can then model these 

bodies as growing and deformable porous media and study the fi l tration of organic 

l iquids through them. Of course, this is not the only field which involves porous 

media with mass exchanges. Other examples can be found in composite material 

manufacturing, crystal l ization , petroleum and chemical engineering,  glaciology, 

sedimentation and erosion, contamination and decontamination of soi ls .  
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