38 research outputs found
Investigating the Effects of Several Parameters on the Growth of Chlorella vulgaris Using Taguchi's Experimental Approach
Algae are part of photosynthetic organisms that play an important role in the aquatics nutrition. Like plants, algae need water, light and CO2 to grow. Using Taguchi's experimental approach (5 factors in four levels with 16 runs), effects of several parameters (NaCl, sodium bicarbonate and iron concentrations as well as light and temperature) on the growth of Chlorella vulgaris was studied. Increasing the concentrations of NaCl and sodium bicarbonate resulted in corresponding decreases in the growth of C. vulgaris. Media with 30.0g l-1NaCl did not indicate any algal growth. Also, with 9.0 g l-1sodium bicarbonate, biomass production was decreased. Chlorella vulgaris showed different growing behaviors at the various concentrations of iron (Fe+2) and at the different temperatures of this study. Maximum biomass production (approximately 3.56 g dry matter) was obtained at the 0.0 g l-1 sodium bicarbonate, 10.0g l-1NaCl, 18.0 µmol l-1 iron and at 30±2 °C. Yellow and blue lights increased the algal growth. Analysis of variance showed that salinity (i.e., the NaCl concentration) had the highest impact on the biomass production.
Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract
The biosynthesis of metallic nanoparticles is on a sharp rise as they have growing applications in environmental and biomedical sciences. This study reports an eco-friendly and cost-effective methodology for synthesizing biogenic silver nanoparticles (AgNPs) using the extract of Medicago sativa (M. sativa) cultivated in South Khorasan. The parameters used in the synthesis process were optimized to obtain uniformly distributed AgNPs in suitable sizes. The morphological, structural, and bonding characteristics of M. sativa extract-based AgNPs (MSE-AgNPs) were explored using FTIR, FESEM, EDS, TEM, XRD, UV–Vis, and DLS techniques. UV–Vis spectroscopy confirmed the formation of MSE-AgNPs by observing the typical surface plasmon resonance (SPR) peak at 419 nm. XRD, FESEM, TEM, and DLS analyses confirmed the formation of face-centered cubic (fcc) crystalline structure, spherical/elliptical morphology, the average particle size of 15–35 nm, and highly stable MSE-AgNPs. Green synthesized MSE-AgNPs indicated a significant antioxidant activity (78%) compared to M. sativa extract (32%). As such, the synthesized MSE-AgNPs revealed a potential antioxidant activity towards the DPPH radicals. The biologically synthesized MSE-AgNPs exhibited highly potential antibacterial and antifungal activities against Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus aureus, and Candida albicans with the minimum inhibitory concentration (MIC) values of 62.5, 125, 125, 1000, 125, 1000, and 31.25 µg/mL, respectively. In vitro cytotoxicity of the MSE-AgNPs against human fibroblast (HF) cells indicated a dose–response activity (with IC50 value of 18 µg/mL). Moreover, the AgNPs revealed efficient photocatalytic degradation of thymol blue (TB) as an anionic dye and malachite green (MG) as a cationic dye under sunlight and UV irradiations. Up to 94.37% and 90.12% degradation rates were obtained for MG and TB within only 100 min of UV irradiation. These observations signify that synthesized MSE-AgNPs can have great potential for biological and environmental applications
Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media
Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of fluid content and accumulating potentials of such media. This paper suggests an integrated workflow using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics (T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about uncertainties as well as their most likely values. The results from our workflow give reliable estimates of water saturation from AVO data at small uncertainties, provided background sand porosity values and isotropic overburden properties are known. For volume of shale, the proposed workflow provides reasonable estimates even when larger uncertainties are present in AVO data
An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain
<p>Abstract</p> <p>Background</p> <p>Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance).</p> <p>Methods</p> <p>Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP) and 30 age-matched pain-free female control subjects (CON) participated in the study.</p> <p>Results</p> <p>NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst.</p> <p>Conclusion</p> <p>These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline) together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds.</p
An Empirical Approach in Prediction of the Roof Rock Strength in Underground Coal Mines
In study of the behaviour of roof strata in underground coal mines the strength of the roof rock, particularly, the unconfined compressive strength (UCS) plays a significant role. Application of simple tools in assessment of the rock strength has been practiced by many researchers one of which being Schmidt hammer. Due to its portability, easiness in use, rapidity, low cost and its non-destructive procedure of application, it is among the most popular tools in this respect. Application of this tool in prediction of the roof rock strength, in a new context, is the aim of this research work. A comprehensive review of the literature revealed that most of the empirical equations introduced for determination of the unconfined compressive strength of rocks based on the Schmidt hammer rebound number (Rn) are not practically reliable enough as in most of the cases one formula is used for all types of rocks, although the density of rocks is introduced to the formulas in some of these cases. On the other hand, if one specific relationship between hammer rebound number and unconfined compressive strength is introduced for one type of rock, the equation will yield a much higher coefficient of correlation. During a research program supported by The Shahrood University of Technology, Iran, a third type of approach was considered. The study aimed to express the relationship between Schmidt rebound number and unconfined compressive strength of rock mass under a particular geological circumstances. As an example, in this study, the situation selected was the immediate roof rock of coal seams at Tazareh Colliery, Shahrood, Iran. In order to determine the Schmidt number and the unconfined compressive strength, a significant number of samples were selected and tested both in-situ and in the laboratory and a new relationship was introduced. The equation can be used to predict UCS of the roof rock in coal extracting areas at this colliery by performing simple in-situ Schmidt hammer tests
Charakterystyka i badania koncentracji w kopalni rud żelaza Jalal Abad
Characterization and determination of liberation degree are the first stages of ore dressing. Block 4 of Jalal Abad mine, Kerman province, Iran, has three kinds of iron ores; D1, D2 and D3, with different grades. In this research, chemical analysis, mineralogy, liberation degree and magnetic enrichment studies were done by XRF, XRD, microscopic sections and Davis tube, respectively. The results indicated that D1, D2 and D3 had average iron grades of 58, 52 and 38%, respectively. The minerals of Magnetite, Hematite, Dolomite, Calcite and Quartz were distinguished. Average liberation degree was estimated about 500 μm by Microscopic studies. The results of magnetic tests showed that iron grade of D1, D2 and D3 concentrates increased to 70.46, 63.98 and 45.37%, respectively. The optimization of blending was investigated for production of accumulated concentrate with desirable iron grade (68%) using MATLAB software.Charakterystyka i określenie stopnia uwalniania to pierwsze etapy w procesie oczyszczania rud. W bloku 4 kopalni rud żelaza Jalal Abad w prowincji Kerman w Iranie, znajdują się trzy rodzaje złóż rud żelaza: D1, D2, D3, różnej klasy. W pracy tej przedstawiono wyniki analizy chemicznej, mineralogicznej, stopnia uwalniania oraz separacji magnetycznej wykonanych przy zastosowaniu metod XRF, dyfrakcji (XRD) oraz metod mikroskopowych i rurki Davisa. Wyniki analiz wskazują, że złoża D1, D2, D3 to złoża w klasie o zawartości odpowiednio 58, 52 i 38%. W próbkach określono zawartość magnetytu, hematytu, dolomitu, kalcytu oraz kwarcu. Średni poziom uwalniania określony przy pomocy metod mikroskopowych oszacowano na 500 μm. Wyniki badań magnetycznych wskazują, że zawartości żelaza w koncentracie D1,D2 i D3 wzrosły odpowiednio do 70.46, 63.98 i 45.37%. Przeprowadzono optymalizację mieszania koncentratów w celu produkcji końcowego koncentratu o pożądanym poziomie zawartości żelaza (68%) przy zastosowaniu oprogramowania MATLAB