136 research outputs found

    Transition Form Factors between Pseudoscalar and Vector Mesons in Light-Front Dynamics

    Full text link
    We study the transition form factors between pseudoscalar and vector mesons using a covariant fermion field theory model in (3+1)(3+1) dimensions. Performing the light-front calculation in the q+=0q^+ =0 frame in parallel with the manifestly covariant calculation, we note that the suspected nonvanishing zero-mode contribution to the light-front current J+J^+ does not exist in our analysis of transition form factors. We also perform the light-front calculation in a purely longitudinal q+>0q^+ > 0 frame and confirm that the form factors obtained directly from the timelike region are identical to the ones obtained by the analytic continuation from the spacelike region. Our results for the BDlνlB \to D^* l \nu_l decay process satisfy the constraints on the heavy-to-heavy semileptonic decays imposed by the flavor independence in the heavy quark limit.Comment: 20 pages, 14 figure

    Possible explanation of the discrepancy of the light-cone QCD sum rule calculation of g(D*Dpi) coupling with experiment

    Full text link
    The introduction of an explicit negative radial excitation contribution in the hadronic side of the light cone QCD sum rule (LCSR) of Belyaev, Braun, Khodjamirian and Ruckl, can explain the large experimental value of g(D*Dpi), recently measured by CLEO. At the same time, it considerably improves the stability of the sum rule when varying the Borel parameter.Comment: 9 pages, 1 PostScript figure

    (D* to D + gamma) and (B* to B + gamma) as derived from QCD Sum Rules

    Full text link
    The method of QCD sum rules in the presence of the external electromagnetic FμνF_{\mu\nu} field is used to analyze radiative decays of charmed or bottomed mesons such as DDγD^{\ast}\to D\gamma and BBγB^{\ast}\to B\gamma, with the susceptibilities obtained previously from the study of baryon magnetic moments. Our predictions on DD^{\ast} decays agree very well with the experimental data. There are differences among the various theoretical predictions on BB^{\ast} decays but the data are not yet available.Comment: 11 pages, Late

    Rare B -> K^* l^+ l^- decay, two Higgs doublet model, and light cone QCD sum rules

    Get PDF
    The decay width, forward-backward asymmetry and lepton longitudinal and transversal polarization for the exclusive K^* -> l^+ l^- decay in a two Higgs doublet model are computed. It is shown that all these quantities are very effective tools for establishing new physics.Comment: 18 pages, 7 figures, LaTeX formatte

    Covariant Light-Front Approach for s-wave and p-wave Mesons: Its Application to Decay Constants and Form Factors

    Full text link
    We study the decay constants and form factors of the ground-state s-wave and low-lying p-wave mesons within a covariant light-front approach. Numerical results of the form factors for transitions between a heavy pseudoscalar meson and an s-wave or p-wave meson and their momentum dependence are presented in detail. In particular, form factors for heavy-to-light and B to D** transitions, where D** denotes generically a p-wave charmed meson, are compared with other model calculations. The experimental measurements of the decays B^- to D** pi^- and B to D D**_s are employed to test the decay constants of D**_s and the B to D** transition form factors. The heavy quark limit behavior of the decay constants and form factors is examined and it is found that the requirement of heavy quark symmetry is satisfied. The universal Isgur-Wise (IW) functions, one for s-wave to s-wave and two for s-wave to p-wave transitions, are obtained. The values of IW functions at zero recoil and their slope parameters can be used to test the Bjorken and Uraltsev sum rules.Comment: 59 pages, 6 figures. Version to appear in Phys. Rev. D. Changes are: (i) D_s to phi transition form factors are discussed and compared with the recent FOCUS measurements and (ii) zero mode effects are clarifie

    Radiative Scalar Meson Decays in the Light-Front Quark Model

    Full text link
    We construct a relativistic 3P0^3P_0 wavefunction for scalar mesons within the framework of light-front quark model(LFQM). This scalar wavefunction is used to perform relativistic calculations of absolute widths for the radiative decay processes(0++)γγ,(0++)ϕγ(0^{++})\to\gamma\gamma,(0^{++})\to\phi\gamma, and (0++)ργ(0^{++})\to\rho\gamma which incorporate the effects of glueball-qqˉq\bar{q} mixing. The mixed physical states are assumed to be f0(1370),f0(1500)f_0(1370),f_0(1500),and f0(1710)f_0(1710) for which the flavor-glue content is taken from the mixing calculations of other works. Since experimental data for these processes are poor, our results are compared with those of a recent non-relativistic model calculation. We find that while the relativistic corrections introduced by the LFQM reduce the magnitudes of the decay widths by 50-70%, the relative strengths between different decay processes are fairly well preserved. We also calculate decay widths for the processes ϕ(0++)γ\phi\to(0^{++})\gamma and (0^{++})\to\gamma\gamm involving the light scalars f0(980)f_0(980) and a0(980)a_0(980) to test the simple qqˉq\bar{q} model of these mesons. Our results of qqˉq\bar{q} model for these processes are not quite consistent with well-established data, further supporting the idea that f0(980)f_0(980) and a0(980)a_0(980) are not conventional qqˉq\bar{q} states.Comment: 10 pages, 4 figure

    Poincare Invariant Algebra From Instant to Light-Front Quantization

    Get PDF
    We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra.Comment: 21 pages, 3 figures, 1 tabl

    Vertex functions for d-wave mesons in the light-front approach

    Full text link
    While the light-front quark model (LFQM) is employed to calculate hadronic transition matrix elements, the vertex functions must be pre-determined. In this work we derive the vertex functions for all d-wave states in this model. Especially, since both of 3D1^3D_1 and 3S1^3S_1 are 11^{--} mesons, the Lorentz structures of their vertex functions are the same. Thus when one needs to study the processes where 3D1^3D_1 is involved, all the corresponding formulas for 3S1^3S_1 states can be directly applied, only the coefficient of the vertex function should be replaced by that for 3D1^3D_1. The results would be useful for studying the newly observed resonances which are supposed to be d-wave mesons and furthermore the possible 2S-1D mixing in ψ\psi' with the LFQM.Comment: 12 pages, 2 figures, some typos corrected and more discussions added. Accepted by EPJ

    Consistent treatment of spin-1 mesons in the light-front formalism

    Full text link
    We analyze the matrix element of the electroweak current between q \qb vector meson states in the framework of a covariant extension of the light-front formalism. The light-front matrix element of a one-body current is naturally associated with zero modes, which affect some of the form factors that are necessary to represent the Lorentz structure of the light-front integral. The angular condition contains some information on zero modes, i.e., only if the effect of zero modes is accounted for correctly, is it satisfied. With plausible assumptions we derive from the angular condition several consistency conditions which can be used quite generally to determine the zero mode contribution of form factors. The correctness of this method is tested by the phenomenological success of the derived form factors. We compare the predictions of our formalism with those of the standard light-front approach and with available data. As examples we discuss the magnetic moment of the ρ\rho, the coupling constant gDDπg_{D^\ast D \pi}, and the coupling constants of the pseudoscalar density, gπg_\pi and gKg_K, which provide a phenomenological link between constituent and current quark masses.Comment: 36 pages, figure 1 is include

    Bounds on Heavy-to-Heavy Mesonic Form Factors

    Get PDF
    We provide upper and lower bounds on the form factors for B -> D, D^* by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form factor models used in the literature. All the models we investigated failed to fall within the bounds for the combination of form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure
    corecore