85 research outputs found

    The Peter Pan paradigm

    Get PDF
    Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis

    Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

    Get PDF
    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A Genomewide Screen for Suppressors of Alu-Mediated Rearrangements Reveals a Role for PIF1

    Get PDF
    Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition

    Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans

    Get PDF
    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the DeltagprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the DeltagprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the DeltagprB and DeltagprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in DeltagprB, while in the DeltagprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the DeltagprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the DeltagprD strain, compared to the wild-type and DeltagprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development

    Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age: Systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable antenatal identification of pre-eclampsia and small for gestational age is crucial to judicious allocation of monitoring resources and use of preventative treatment with the prospect of improving maternal/perinatal outcome. The purpose of this systematic review was to determine the accuracy of five serum analytes used in Down's serum screening for prediction of pre-eclampsia and/or small for gestational age.</p> <p>Methods</p> <p>The data sources included Medline, Embase, Cochrane library, Medion (inception to February 2007), hand searching of relevant journals, reference list checking of included articles, contact with experts. Two reviewers independently selected the articles in which the accuracy of an analyte used in Downs's serum screening before the 25<sup>th </sup>gestational week was associated with the occurrence of pre-eclampsia and/or small for gestational age without language restrictions. Two authors independently extracted data on study characteristics, quality and results.</p> <p>Results</p> <p>Five serum screening markers were evaluated. 44 studies, testing 169,637 pregnant women (4376 pre-eclampsia cases) and 86 studies, testing 382,005 women (20,339 fetal growth restriction cases) met the selection criteria. The results showed low predictive accuracy overall. For pre-eclampsia the best predictor was inhibin A>2.79MoM positive likelihood ratio 19.52 (8.33,45.79) and negative likelihood ratio 0.30 (0.13,0.68) (single study). For small for gestational age it was AFP>2.0MoM to predict birth weight < 10<sup>th </sup>centile with birth < 37 weeks positive likelihood ratio 27.96 (8.02,97.48) and negative likelihood ratio 0.78 (0.55,1.11) (single study). A potential clinical application using aspirin as a treatment is given as an example.</p> <p>There were methodological and reporting limitations in the included studies thus studies were heterogeneous giving pooled results with wide confidence intervals.</p> <p>Conclusion</p> <p>Down's serum screening analytes have low predictive accuracy for pre-eclampsia and small for gestational age. They may be a useful means of risk assessment or of use in prediction when combined with other tests.</p
    • …
    corecore