
Zhang et al. BMC Systems Biology  (2015) 9:66 
DOI 10.1186/s12918-015-0214-7

METHODOLOGY ARTICLE Open Access

Towards in vivo estimation of reaction
kinetics using high-throughput metabolomics
data: a maximum likelihood approach
Weiruo Zhang1, Ritesh Kolte1 and David L Dill2*

Abstract

Background: High-throughput assays such as mass spectrometry have opened up the possibility for large-scale in
vivomeasurements of the metabolome. This data could potentially be used to estimate kinetic parameters for many
metabolic reactions. However, high-throughput in vivomeasurements have special properties that are not taken into
account in existing methods for estimating kinetic parameters, including significant relative errors in measurements of
metabolite concentrations and reaction rates, and reactions with multiple substrates and products, which are
sometimes reversible. A new method is needed to estimate kinetic parameters taking into account these factors.

Results: A new method, InVEst (In Vivo Estimation), is described for estimating reaction kinetic parameters, which
addresses the specific challenges of in vivo data. InVEst uses maximum likelihood estimation based on a model where
all measurements have relative errors. Simulations show that InVEst produces accurate estimates for a reversible
enzymatic reaction with multiple reactants and products, that estimated parameters can be used to predict the
effects of genetic variants, and that InVEst is more accurate than general least squares and graphic methods on data
with relative errors. InVEst uses the bootstrap method to evaluate the accuracy of its estimates.

Conclusions: InVEst addresses several challenges of in vivo data, which are not taken into account by existing
methods. When data have relative errors, InVEst produces more accurate and robust estimates. InVEst also provides
useful information about estimation accuracy using bootstrapping. It has potential applications of quantifying the
effects of genetic variants, inference of the target of a mutation or drug treatment and improving flux estimation.

Keywords: Relative error, Enzymatic reaction, Parameter estimation, Maximum likelihood, Error-in-all-measurements,
In vivo data

Background
High-throughput assays such as mass spectrometry are
improving rapidly, which creates an opportunity for large
scale in vivo measurements of the metabolome. Those in
vivo data could enable estimation of kinetic parameters of
metabolic reactions which are hard to estimate using in
vitro data.
Metabolic reactions are normally enzyme-catalyzed

reactions, and quantitative estimates of their kinetic
parameters could be very useful. Knowledge of kinetic
parameters allows estimation of reaction rates directly

*Correspondence: dill@cs.stanford.edu
2Department of Computer Science, Stanford University, 353 Serra Mall,
CA94305 Stanford, USA
Full list of author information is available at the end of the article

from concentration measurements. Comparing the esti-
mated kinetic parameters of a reaction in the wild type
and mutant cells permits quantification of the effects of
genetic variants, which may change the abundance or
activity of a metabolic enzyme. Similarly, the effect of
a drug that targets a particular enzyme could be esti-
mated. If parameters can be estimated for many reactions
in a pathway, it would enable inference of the target of
a mutation or drug treatment – if the estimates show
that one enzyme is particularly strongly affected, that
enzyme is probably the target. Finally, estimated param-
eters also allow estimation of maximum reaction rates,
which can then be used as constraints to improve flux
balance analysis [1].
We explore the central problem of how to estimate

the kinetic parameters of individual reactions using
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in vivo high-throughput measurements of metabolite
concentrations and reaction rates at steady state, obtained
by mass spectrometry or by nuclear magnetic reso-
nance. The method requires metabolite concentration
and reaction rate data in multiple experiments under
varying conditions. For example, data could consist of
several experiments obtained by perturbing the sys-
tem through changes in nutrient media, drug treat-
ment, or genetic alterations. From such data, the kinet-
ics of many individual reactions can potentially be
estimated.
Enzyme kinetic parameters have been measured for

at least a century [2]. The basic method involves
mixing a measured amount of substrate and enzyme,
and measuring the concentration of product at vari-
ous points in time, creating a progress curve [3]. In
this setting, the experimenter has control over the ini-
tial concentrations of enzyme and substrate and thus
can obtain relatively accurate measurements for concen-
trations. Although the experimental conditions are not
at steady state, the mathematical formula for the kinet-
ics can be simplified to the familiar Michaelis Menten
kinetics by assuming that some elementary reactions are
in near-equilibrium (this is called the quasi-steady-state
assumption).
In contrast with an in vitro experiment, one major

challenge with in vivo measurements of concentrations
and reaction rates is the presence of significant error.
Except for very low abundance metabolites, the errors
are normally relative, meaning that they are proportional
to the metabolite concentrations, instead of additive.
(Relative error is shown in available experimental data in
Additional file 1: Figure S1.) To quantify measurement
precision with relative errors, experimentalists often use
the coefficient of variation (CV), which is calculated by
dividing the standard deviation of peak area/height by
the mean peak area/height [4–6]. Methods such as least
squares, which assume additive errors, are often not
going to produce accurate estimates of parameters with
relative errors. Because of such significant relative errors,
it might not be reasonable to assume that errors are only
in reaction rates as most of the in vitro enzyme kinetics
methods assume. Relative errors in both concentrations
and reaction rates need to be considered. Furthermore,
many in vivo experiments are not time courses, so the
data are assumed to be at steady-state. Another challenge
with in vivo measurements is the difficulty of measuring
enzyme and intermediate enzyme complex concentra-
tions [7, 8], so these are typically unknown. Finally, control
over metabolite concentrations in the cell is limited, so the
range of experimental data points may be suboptimally
distributed for accurate estimation of all parameters,
making it difficult to estimate some parameters of a
reaction.

A new estimation method, InVEst, standing for In Vivo
Estimation, is described for estimating reaction parame-
ters that addresses the specific challenges of in vivo data.
InVEst uses maximum likelihood estimation, based on
a model where all measurements have relative errors.
As described, InVEst uses a family of reversible reaction
mechanisms with multiple reactants and products with a
single displacement mechanism. It is not always possible
to obtain data from the entire range of metabolite concen-
trations and reaction rates, so some parameters may not
be identifiable. InVEst estimates the standard deviations
of parameter estimates using bootstrapping (a method of
estimating variation in statistics by random subsampling
of a data set), so that the user can understand the range of
errors for the estimates.
Many methods for estimating kinetic parameters have

been proposed, ranging from informal graphical plotting
to sophisticated statistical non-linear regression methods.
However, none have addressed all of the problems of
in vivo estimation discussed above. Many methods are
based on the Michaelis Menten equation which are nor-
mally applied to irreversible single substrate, single prod-
uct reactions. Standard graphical plotting methods, such
as the double reciprocal plot [9] and direct linear plot
[10], are not based on statistical estimation and yield
unnecessarily inaccurate parameter estimates. Somemore
statistically-based methods deal with relative error or
errors in all measurements – but not both. Specifically,
weighted least squares [11] is a general method often
used in non-linear regression that can be applied to var-
ious kinds of reactions, however, it assumes the errors
are additive and that only reaction rates have errors.
Total least squares [12] improves ordinary least squares
by dealing with errors in all measurements, but the errors
are still assumed to be additive. Raaijmakers’ maximum
likelihood estimation method [13] can deal with relative
errors, but assumes that errors are in reaction rates only.
Liebermeister et al. [14] have developed a method that
integrates knowledge from many sources, along with in
vivo measurements, to estimate kinetic parameters using
Bayesian methods. However, this method still assumes
only additive errors and requires a lot of prior informa-
tion about the parameters. Only InVEst deals with relative
errors in all measurements as well as reversible reactions
with multiple substrates and products. A summary of
existing methods appears in Table 1.
In this paper, our goal is to focus on the specific problem

of estimating kinetic parameters as accurately as possible,
given realistic assumptions about data errors. We discuss
the formulation of InVEst, and evaluate the method on
simulated data. We show that InVEst works well on data
with relative errors in all measurements. We also demon-
strate the application of InVEst and discuss the parameter
identifiability issue.
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Table 1 Features of different enzyme kinetic parameter
estimation methods. “WLS” stands for the weighted least squares
method. “TLS” stands for the total least squares method.
“Raaijmakers” is the maximum likelihood method of Raaijmakers

Multiple substrates/ Reversible Relative Error in all
products reaction error variables

Double reciprocal ✗ ✗ ✗ ✗

Direct linear ✗ ✗ ✓ ✓

WLS ✓ ✓ ✗ ✗

TLS ✓ ✓ ✗ ✓

Raaijmakers ✗ ✗ ✓ ✗

InVEst ✓ ✓ ✓ ✓

Methods
Like most methods of kinetic parameter estimation, we
assume that temperature and pressure are constant, so
rate constants in mass action kinetic equations are con-
stant, and the Gibbs Free Energy of Formation is constant.
We also assume that the measured system is at steady
state, meaning that the time derivatives of metabolite
concentrations and reaction rates are zero.
Also, we assume that there are measurements of sta-

ble reactants and products of enzyme reactions, but
not substrate-enzyme complexes, product-enzyme com-
plexes and free enzyme concentrations, as they are gen-
erally difficult to measure experimentally. It is assumed
that metabolite concentrations are obtained by high-
throughputmethods, such as chromatography, mass spec-
troscopy, or nuclear magnetic resonance spectroscopy
[15]. For example, reasonably accurate concentration data
can be obtained by mass spectroscopy with internal stan-
dards. Normally, average value of coefficient of variation
for mass spectrometry below 0.2 is considered as good
measurements [16–18], and thus it is not unreasonable to
expect such data to have a constant coefficient of variation
(i.e., normally distributed relative error) of 20 %.
We also assume that it is possible to obtain measure-

ments of reaction rates. For steady state reaction rate mea-
surement, one widely used method is C13 labeling, which
uses a cell culture at steady state in amediumwith labeled-
carbon substrates. Reaction rates can be determined by
analyzing the labeling pattern of targeted metabolites
from mass spectrometry [19]. In addition, we assume that
the Gibb’s Free Energies of Formation of metabolites are
known, since these are used to compute the equilibrium
constants (Keq) for enzymatic reactions.

Single substrate and product reversible reactions
We use a standard simple but general reaction mechanism
to representmostmetabolic reversible reactions [20]. This
subsection considers single reactant/product case. The
more general case consisting of multiple reactants and

multiple products will be discussed later. The reaction
is a three step process, namely binding, conversion and
release:

a + E
k1−−⇀↽−−
k-1

aE
k2−−⇀↽−−
k-2

bE
k3−−⇀↽−−
k-3

b + E (1)

where a is the reactant, b is the product, E is the free
enzyme, aE and bE are the intermediate complexes, and ki
and k−i are reaction rate constants for i ∈ {1, 2, 3}.
Assuming the reaction is at steady state, an equation for

the reaction rate can be written as:

v = Keq[a]−[b]
c1 + c2[a]+c3[b]

(2)

where Keq = k1k2k3
k−1k−2k−3

is an equilibrium constant,
obtained from the Standard Gibbs Free Energy of Forma-
tion of the reactants and products.
c1 is(

k2k3
k−1k−2k−3

+ k3
k−2k−3

+ 1
k−3

)
/ [Etot] ,

c2 is(
k1k2

k−1k−2k−3
+ k1k3

k−1k−2k−3
+ k1

k−1k−3

)
/[Etot] ,

c3 is(
1
k−2

+ 1
k−1

+ k2
k−1k−2

)
/[Etot] ,

and [Etot], the total enzyme, is [E]+[aE]+[bE].
If Keq is very large and the reversible reactions’ rate

constants (k−2 and k−3) are small, c3 can be neglected
and the rate Eq. 2 can be reduced to standard irreversible
Michaelis Menten equation.
This rate equation can be derived from the ordinary dif-

ferential equations for mass action kinetics of a reaction
(1), by setting the derivatives of the concentrations of all
chemical species to zero (since the system is assumed to be
at steady state) and solving for [Etot]. The detailed deriva-
tion and calculation for the steady state equation and
equilibrium constant are presented in Additional files 2
and 3.

Parameter estimation by maximum likelihood for single
substrate/product reversible reaction
The InVEst method estimates the parameters of kinetic
rate Eq. (2) using maximum likelihood, assuming relative
error in all measurements. Parameters are estimated
from a set of n experiments, each with data values
for ai (substrate), bi (product), vi (reaction rate), for
experiment i.
Each data value has some known relative error. Specif-

ically, we have ai = ai0εa, bi = bi0εb and vi = vi0εv,
where ai0, bi0, and vi0 are latent variables representing
the data values without measurement error, multiplied by
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a normally distributed error with mean 1 and standard
deviation σ : εx ∼ N

(
1, σ 2

x
)
(where x is a, b, or v).

The likelihood function is:

L(ai0, bi0, vi0, c1, c2, c3; ai, bi, vi) =
f (ai, bi, vi; ai0, bi0, vi0, c1, c2, c3)

Since each data acquisition can be carried out indepen-
dently [21], errors in a, b and v can be assumed to be
independent of c1, c2 and c3 and each other, the likelihood
function can be written as

f (ai, bi, vi; ai0, bi0, vi0) =∏
f (ai; ai0)

∏
f (bi; bi0)

∏
f (vi; vi0)

The distribution of ai is

N
(
ai0, a2i0σ

2
a
) = 1√

2πa2i0σ 2
a

exp
(

− (ai − ai0)2

2a2i0σ 2
a

)

The distributions of the other data values are similar.
The parameters that maximize the likelihood also max-

imize the log of the likelihood, which is

log(L) =
n∑

i=1

(
− log

(
ai0σa

√
2π

))
+

n∑
i=1

(
− (ai − ai0)2

2a2i0σ 2
a

)

+
n∑

i=1

(
− log

(
bi0σb

√
2π

))
+

n∑
i=1

(
− (bi − bi0)2

2b2i0σ
2
b

)

+
n∑

i=1

(
− log

(
vi0σv

√
2π

))
+

n∑
i=1

(
− (vi − vi0)2

2v2i0σ 2
v

)

Negating the log likelihood and dropping constant fac-
tors yields an objective function to minimize, subject to
the constraints of Eq. 2.

min
( n∑

i=1
(log(ai0) + log(bi0) + log(vi0))

+ 1
2σ 2

a

n∑
i=1

(
ai
ai0

− 1
)2

+ 1
2σ 2

b

n∑
i=1

(
bi
bi0

− 1
)2

+ 1
2σ 2

v

n∑
i=1

(
vi
vi0

− 1
)2

)

s.t. vi0 = Keqai0 − bi0
c1 + c2ai0 + c3bi0

, where i = 1, 2, · · · , n

where all the ai, bi and vi are experimental measurements,
all the relative errors σ are known and ai0, bi0, vi0 are
latent variables, and c1, c2 and c3 are the parameters to be
estimated by solving the optimization problem.
In the implementation, this is simplified to an uncon-

strained optimization problem by substituting the right-
hand side of Eq. 2 for vi0.

Generalization to multiple substrates and products
For reactions with multiple substrates and products, there
are two possible mechanisms, namely single-displacement
and double-displacement. For single-displacement reac-
tions, the order of substrates binding to the enzyme can
be random or ordered. Those two type of reactions can be
approximated by following reaction [22]:

a1 + a2 + · · · + am + E
k1−−⇀↽−−
k-1

a1a2· · ·amE
k2−−⇀↽−−
k-2

b1b2· · ·bpE
k3−−⇀↽−−
k-3

b1 + b2 + · · · + bp + E

where m is the number of reactants and p is the number
of products in this reaction.
A steady state equation can be derived as in the single

reactant/product case:

v =
Keq

m∏
j=1

[aj]−
p∏

j=1
[bj]

c1 + c2
m∏
j=1

[aj]+c3
p∏

j=1
[bj]

(3)

where c1, c2, c3, Keq, and Etot are as before.
The derivation of the objective function to minimize

in order to find the parameters that maximize the like-
lihood is a straightforward generalization of the single
substrate/product case.

min

⎛
⎝ n∑

i=1

m∑
j=1

log(aij0) +
n∑

i=1

p∑
j=1

log(bij0) +
n∑

i=1
log(vi0)

+ 1
2σ 2

a

n∑
i=1

m∑
j=1

( aij
aij0

− 1
)2

+ 1
2σ 2

b

n∑
i=1

p∑
j=1

( bij
bij0

− 1
)2

+ 1
2σ 2

v

n∑
i=1

(
vi
vi0

− 1
)2

)

which is maximized subject to the constraints of Eq. 3.
In the implementation, this can also be simplified to an

unconstrained optimization problem by substituting the
right-hand side of Eq. 3 for vi0.

Parameter identifiability
It is sometimes not possible to obtain in vivo data whose
values are well enough distributed to estimate all parame-
ters accurately. In this section, we characterize some cases
when parameters cannot be accurately estimated. From
Eq. (2), it is clear that when one term in the denominator
is much smaller than the others, v is relatively insensitive
to the corresponding parameter. For example, if c1, c2a �
c3b, then Eq. 2 will be approximately

v = Keq[a]−[b]
c1 + c2[a]

,
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So changes in c3 will have little effect on v. More impor-
tantly, changes in data values resulting from erroneous
estimates of c3 will be small relative to the noise in the
data, so estimates of c3 tend to have large errors. Similarly,
estimates of c1 tend to have large errors when c2a+ c3b �
c1 and estimates of c2 have large errors when c1 + c3b �
c2a.
For illustration, consider the simpler case when Keq is

very large and the rate Eq. (2) can be approximated by
the standard Michaelis Menten equation. In Fig. 1(a), two
data sets derived from the same actual parameters have
large ai, so the vi values lie near the maximum value of the
curve. We call this region as saturation region since reac-
tion rates asymptotically approach a maximum level, and
additional increases in the substrate concentration do not
lead to an increase in the reaction rates. In this case, c2,
which determines the maximum value, is the only param-
eter that affects the curve fit, so estimates of c1 from both
data sets have large errors. In Fig. 1(b), all of the substrate
concentration ai values are small, so the points lie near
the region where the curve is increasing linearly. We call
this region as linear region since reaction rates increase
in almost a linear fashion with increasing substrate con-
centrations. The slope in this region is determined by c1
almost independently of c2 so estimates of c2 have large
errors.
Estimates of the accuracy of parameter estimates must

be obtained using the available data. InVEst uses boot-
strapping to estimate the variance of the parameter esti-
mates.

Bootstrap estimation of standard error
The c parameter estimates can vary widely in accuracy,
depending on the experimental data. Bootstrapping [23]
is used to estimate the relative standard errors and bias
of the parameter estimates, so users can tell whether the
parameter estimation is good or not. Let ĉ be the estimate
from the data, and ĉi∗ be the estimate from a bootstrap
sample. A typical recommendation is to use N = n2 boot-
strap samples for n experimental measurements [24]. The
bootstrap estimation of standard errors is calculated from
SEB(ĉ) = [ 1

N
∑

(ĉi∗ − ĉ)2
] 1
2 and bias estimation is calcu-

lated by Bias = 1
N

∑
ĉi∗ − ĉ[25]. As the c parameters have

a large range of possible values, it is more appropriate to
use relative errors and relative bias to describe the esti-
mate. The relative standard error is calculated by SEB/ĉ
and the relative bias is calculated by Bias/ĉ.

Estimation of total enzyme change
Estimating kinetic parameters can be useful for identi-
fying the effects of genetic changes or drug treatments
that target metabolic enzymes. The total concentration of
the enzyme in the cell may change because of changes in
gene expression or loss of function in one or more copies
of the gene coding for the enzyme, or the activity may
change because of changes in the protein sequence or post
translational modifications. Estimating these changes for
specific enzymes in each sample can help identify the tar-
get of a mutation or drug (it’s the enzyme whose activity
changes the most), and may be useful for estimating the
impact of such a change on flux through a network.

Fig. 1 Identifiability issue in two parameter case. When data points are not well-distributed, parameter identification can be difficult. This shows the
curve for parameters predicted from two possible data sets, one with points gathered in the saturation region (where reaction rates asymptotically
approach a maximum level) in (a) and in the other in the linear region (where substrate concentrations are small and reaction rates increase almost
linearly with substrate concentrations) in (b)
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Since each of the kinetic parameters ci is of the form
c′i/Etot , where c′i is independent of the enzyme concentra-
tion, Etot can be estimated from the ratio

Ewttot
Emt
tot

= cmt
i
cwti

where cwti and cmt
i are corresponding ci parameters (i = 1,

2 or 3) for wild type and mutant (or drug treated) samples.
Note that it is possible to obtain a reliable estimate for Etot
whenever there are reliable estimates for one of the three
parameters in both samples.

Results
Evaluate InVEst using simulated data
We evaluate the parameter estimation method on simu-
lated data. For MATLAB code for reproducing the results
of this work, please refer to [26]. The simulations were
carried out in MATLAB on a laptop computer with an
Intel Core i5-4200u 2.3 GHz processor and 8 GB installed
memory.
Many reactions in metabolic pathways have multiple

substrates and products and are reversible reactions.
The simulation is based on the reaction acetylor-
nithine aminotransferase from Saccharomyces Cerevisiae
Arginine biosynthesis pathway with Arg8 [27]. Kinetic
parameters and the total enzyme concentration are not
available, and thus we use some heuristic numbers for
them. The experimental data are chosen to be well-
distributed, since poorly distributed data would guarantee
inaccurate parameter estimates even for the best possible
estimation method.
The reaction is:

AcGLU-SA + GLU −−⇀↽−− AcORN + 2 − oxoglutarate

Abbreviations [28]: AcGLU-SA, N-acetyl-glutamate-
semialdehyde; GLU, L-glutamate; AcORN, N-acetyl-
ornithine.
The standard Gibbs Free Energy of Formation for the

metabolites are taken from MetaCyc database [29], and
are provided in the Additional file 4. The standard Gibbs
Free Energy of Formation can be used to compute Keq =
1.7281, and, assuming Etot = 1 M, the c parameters are
c1 = 2.5783, c2 = 3.7327 and c3 = 3.5238.
To characterize the amount of data for effective use of

InVEst, we evaluated the accuracy of parameter estimates
for varying numbers of simulated experiments. Data sets
of 12, 24 and 30 experiments were generated by choos-
ing values for substrate and product concentrations and
computing v exactly for each choice based on Eq. 3. Rela-
tive errors were introduced by multiplying a random value
from the normal distribution of N(1, σ 2). A value of 0.2
was used for σ for metabolites, and σv of 0.2 was used for
reaction rates.

For each number of experiments, 1,000 simulated data
sets were generated, the c parameters were estimated
using InVEst, and the mean and standard error were cal-
culated. The results are shown in Table 2. With increasing
sample size, the relative standard errors and bias in the
estimates are improved. It is evident that the results for
sample size of 24 and 30 are quite accurate with rela-
tive standard error near 10 % and very small relative bias.
Twenty to thirty samples seems to be a reasonable sample
size to choose for accurate estimations.
Second, we consider the effect of greater error in reac-

tion rate estimates, with σv = 0.5. The results are shown
in Table 3. The relative standard errors increase, but are
still below 20 %. The relative bias values are also low.
This shows that InVEst is robust to different measurement
errors.
It is also possible to evaluate the accuracy of estimates

when there is only one data set (with multiple experi-
ments) available, as would be the case in normal use of
InVEst in practice. The bootstrap method is used to esti-
mate relative standard errors in parameter estimates. To
evaluate the bootstrap method, we generated a single data
set of 30 experiments as the input data for parameter esti-
mation and randomly subsampled the 30 data points 1,000
times. Each bootstrap subsample simulation took around
10 sec. The estimates for σv = 0.2 and σv = 0.5 are shown
in Tables 4 and 5 respectively. As expected, the bootstrap
estimates are very similar to the previous estimates from
1,000 simulated data sets.

Comparison of InVEst with prior methods
Most current methods produce optimal estimates only
when errors are additive and when errors occur only
in reaction rate measurements. These assumptions are

Table 2 Average c parameter estimates, relative standard errors
and relative bias as a function of number of experiments for
acetylornithine aminotransferase when σv = 0.2. Results are
based on 1,000 simulated data sets. “n” is the number of
experiments. “Avg Est” is the average value of the estimates. “Rel
SE” is the relative standard error, and “Rel bias” is the relative bias

n Run time True Avg Est Rel SE Rel bias

12 1.74sec/simulation c1 : 2.578 2.315 0.188 0.102

c2 : 3.733 3.68 0.108 0.014

c3 : 3.524 3.54 0.10 0.007

24 7.98sec/simulation c1 : 2.578 2.567 0.143 0.004

c2 : 3.733 3.755 0.081 0.006

c3 : 3.524 3.544 0.087 0.006

30 20.04sec/simulation c1 : 2.578 2.573 0.129 0.002

c2 : 3.733 3.742 0.062 0.002

c3 : 3.524 3.517 0.073 0.002
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Table 3 c parameter estimates for acetylornithine aminotransferase
when σv = 0.5. Results are based on 1000 simulated data sets of
30 experiments, each

True Avg Est Rel SE Rel bias

c1 2.578 2.555 0.189 0.009

c2 3.733 3.806 0.127 0.020

c3 3.524 3.652 0.140 0.036

generally not true with in vivo data. In this subsection, we
compare InVEst to some existing methods and show that
InVEst produces better estimates when data have relative
errors in all measurements.
As some of the existing methods only work on irre-

versible enzymatic reactions, we use the two parameter
case of Eq. 2 for comparison. In this case, there are two
parameters to be estimated, namely c1 and c2.

v = Keq[a]
c1 + c2[a]

,

We first simulate the data with relative errors to both
substrate a and reaction rate v, and second apply InVEst
and prior methods to obtain estimates for the Michaelis
Menten like curve. One thousand simulated data sets of 30
experiments each are used. The results are summarized in
Table 6. InVEst has superior performance in the estimates
and relative standard errors.

Predicting total enzyme concentration change
As noted above, the relative difference in Etot between
wild type and mutant or drug-treated samples can be esti-
mated from the estimate of any of the ci parameters from
two sets of experiments.

Ewttot
Emt
tot

= cmt
i
cwti

.

We illustrate estimation of Etot change using the Arg8
reaction. For the wild type samples, the total enzyme con-
centration is Ewttot = 1 M, and for the mutant/drug treated
samples, the total enzyme concentration is Emt

tot = 0.1 M.
Results of the wild-type estimate appear in the previous
section. Additional data for the mutant were generated
as above based on the c parameter values of mutant/drug
treated sample and 1,000 simulated data sets are used. The

Table 4 c parameter estimates for acetylornithine aminotransferase
when σv = 0.2. Estimates are from a single simulated data set of
30 experiments. The bootstrap method was used to estimate
relative standard error (“Rel SE”) and relative bias (“Rel bias”)

True Est Rel SE Rel bias

c1 2.578 2.750 0.111 0.008

c2 3.733 3.902 0.066 0.005

c3 3.524 3.552 0.094 0.016

Table 5 c parameter estimates for acetylornithine aminotransferase
when σv = 0.5. Estimates are from a single simulated data set of
30 experiments. The bootstrap method was used to estimate
relative standard error (“Rel SE”) and relative bias (“Rel bias”)

True Est Rel SE Rel bias

c1 2.578 2.933 0.152 0.021

c2 3.733 4.081 0.184 0.052

c3 3.524 3.343 0.243 0.059

estimates for mutant/drug treated sample are shown in
Table 7.
To obtain the prediction of total enzyme change, we take

cmt
i /cwti . The results are shown in Table 8.
Since any of the ci parameters can be used to estimate

the change in Etot , the one that gives minimum stan-
dard error, c2, was chosen. This also demonstrates that
even though sometimes identifiability issues can occur
and some parameters cannot be estimated, our method
could still be very useful if one parameter can be estimated
accurately.

Discussion
This work is intended to be a first step towards estimat-
ing parameters for reactions in large metabolic networks
in vivo. In vivo estimation will need to be based on data
that have relatively large relative errors in all measured
parameters, and will have to deal with a variety of reaction
kinetics, including reactions that are reversible and have
multiple substrates and/or products. Although measure-
ment and estimation of enzyme kinetics has been studied
for many decades, there is no single existing estimation
method that addresses all of these issues. We have pro-
posed a maximum likelihood approach to estimate kinetic
parameters using nonlinear optimization, with estimates
on the standard error and bias of the results using the
bootstrap.

Table 6 Comparison of the accuracy of prior methods: total least
square (TLS), ordinary least square (OLS), direct linear plot (DLP),
double reciprocal plot(DRP) and InVEst. True c1 = 1.5, True
c2 = 0.8. Data have relative errors in all variables. Results are
based on 1,000 simulated data sets of 30 experiments, each. “Avg
Est” is the average value of the estimates. “Rel SE” is the relative
standard error

Avg Est c1 Avg Est c2 Rel SE c1 Rel SE c2

TLS 0.840 0.940 0.389 0.143

OLS 1.036 0.921 0.413 0.147

DLP 1.396 0.883 0.429 0.262

DRP 1.859 0.498 0.307 1.124

InVEst 1.518 0.766 0.128 0.112
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Table 7 c parameter estimates for acetylornithine aminotransferase
from mutant/drug treated sample. Results are based on 1,000
simulated data sets

True Avg Est Rel SE Rel bias

c1 25.783 24.784 0.119 0.039

c2 37.327 37.480 0.061 0.004

c3 35.238 35.518 0.065 0.008

Simulations show that InVEst produces accurate esti-
mates for realistic high-throughput metabolomics data.
For example, with 20–30 samples with coefficients of 20 %
in metabolite concentrations and 50 % in reaction rate
estimates, estimates have a relative standard error of less
than 20 %. Collecting data of this quality would be tech-
nically difficult, but is within the current state of the
art.
An advantage of the method is that it estimates each set

of reaction parameters independently. If measurements
are not available for some metabolites, it can still estimate
parameters for those reactions for which the data include
all substrates and products.
Solving the problem of in vivo parameter estimation

in its full generality will require meeting a number of
additional challenges. Some reactions have more complex
kinetics than those we consider, especially various kinds
of inhibition. When the inhibiting metabolite and mech-
anism of inhibition are known, the approach described
here can probably be generalized to accommodate the
inhibition mechanism in our future work. Otherwise, a
process of model selection may be necessary, where com-
peting models are estimated and the quality of the results
compared, with appropriate adjustments for model com-
plexity. In addition, it will be necessary to deal with the
kinetics of transport reactions, and to take account of
different compartments in the cell.
Parameter identifiability is a difficult issue in in vivo

estimation. We have shown that accurate estimates of all
parameters require data that is well-distributed over the
kinetics curve, but such data will not often be obtainable
for several reasons. Experimental data must be obtained
by perturbing metabolites and fluxes, for example, by
adjusting nutrient media, testing mutants, and target-
ing reactions with drugs. First, accurate estimation may
require non-physiological concentrations of metabolites

Table 8 Etot change prediction based on 1,000 simulated data
sets

True Avg Est Rel SE Rel bias
Ewttot
Emt
tot

= cmt
1
cwt1

10 10.214 0.091 0.021
Ewttot
Emt
tot

= cmt
2
cwt2

10 9.957 0.022 0.004
Ewttot
Emt
tot

= cmt
3
cwt3

10 10.115 0.049 0.012

– estimating c3 for a reaction that is nearly irreversible
being an example. More generally, there is usually inad-
equate controllability of metabolite concentrations and
reaction fluxes to obtain the experimental values needed
for accurate estimation, for many reasons including con-
centrations are toxic or inadequate to sustain life, and
rate-limiting reactions that make high fluxes in other
reactions impossible to obtain. Since we can’t estimate
everything accurately, it is important to produce estimates
of the standard errors of parameter estimates, so we can
tell which ones are meaningful. Also, as we note above, if
some but not all parameters of a reaction can be estimated
accurately, the results still may be useful. For example, it
is possible to estimate the total concentration or relative
activity of an enzyme in wild-type vs. mutant cells when
only one of the kinetic parameters is accurately estimated.

Conclusion
In conclusion, a new method, InVEst, is developed for
estimating reaction kinetic parameters in metabolic net-
works that addresses the specific challenges of in vivo
data. InVEst uses maximum likelihood estimation based
on models where all measurements have potentially rela-
tive errors. It can be applied to multiple substrate/product
reversible enzymatic reactions with a generalized sin-
gle displacement mechanism. Because it is not always
possible to obtain good data covering full range of possi-
ble metabolite concentrations and reaction rates, certain
parameters may be non-identifiable. InVEst uses boot-
strap to estimate the standard errors of parameter estima-
tions that can tell which estimates are reliable.
InVEst enables the estimation of reaction rates directly

from concentration measurements. Also, comparing the
estimated kinetic parameters of a reaction in the wild type
andmutant cells can quantify enzyme abundance or activ-
ity change due to genetic variants. The same method can
also be used to measure the effect of a drug that targets
a particular enzyme. Moreover, estimated parameters can
be used to estimate maximum reaction rates, which could
be used as constraints to improve flux-balance analysis.

Additional files

Additional file 1: Experimental data support on relative error model.
Figure S1 Noise errors in high-throughput metabolomic data tend to be
relative. The plot shows the empirical standard deviation vs. mean of
metabolite concentrations in a publicly available mass spectrometry data
set of 40 human urine samples [30]. Each sample has 3 technical replicates,
which were used to calculate the standard deviation and mean of
metabolite concentrations. The data for “peak 105” were chosen because
the chromatographic peak appears in all three replicates of the sample and
the measurements cover a wide range of concentrations across different
samples. Low concentrations are omitted because they are highly
inaccurate due to background noise. There is a linear relationship
(R2 = 0.71) between standard deviation and concentration mean, showing
that errors are proportional to measured concentration. (PDF 1894 kb)

http://www.biomedcentral.com/content/supplementary/s12918-015-0214-7-s1.jpg


Zhang et al. BMC Systems Biology  (2015) 9:66 Page 9 of 9

Additional file 2: Derivation for steady state rate equation. This file
provides a detailed derivation for steady state rate equation of a single
reactant and single product reversible metabolic reaction presented in
Methods section. (PDF 92.8 kb)

Additional file 3: Equilibrium constant Keq. The equilibrium constant
Keq is assumed to be a known constant. This file provides the calculation of
equilibrium constant Keq based on standard Gibbs Free Energies of
Formation. (PDF 98.8 kb)

Additional file 4: Standard Gibbs Free Energy of Formation MetaCyc.
This file provides standard Gibbs Free Energy of Formation taken from
MetaCyc database [29] for metabolites used in the simulation example in
Results section. (PDF 51.4 kb)
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