1,366 research outputs found

    Comment on "Fermionic entanglement ambiguity in noninertial frames"

    Full text link
    In this comment we show that the ambiguity of entropic quantities calculated in Physical Review A 83, 062323 (2011) for fermionic fields in the context of Unruh effect is not related to the properties of anticommuting fields, as claimed in Physical Review A 83, 062323 (2011), but rather to wrong mathematical manipulations with them and not taking into account a fundamental superselection rule of quantum field theory.Comment: To appear in Physical Review A. Some of the problems discussed in this comment can also be found in other previously published papers studying the Unruh effect for fermions (in the context of quantum information theory). An extended version of the comment can be found here http://arxiv.org/abs/1108.555

    Physical qubits from charged particles: IR divergences in quantum information

    Get PDF
    We consider soft photons effects (IR structure of QED) on the construction of physical qubits. Soft-photons appear when we build charged qubits from the asymptotic states of QED. This construction is necessary in order to include the effect of soft photons on entanglement measures. The nonexistence of free charged particles (due to the long range of QED interactions) lead us to question the sense of the very concept of free charged qubit. In this letter, using the "dressing" formalism, we build physical charged qubits from dressed fields which have the correct asymptotic behavior, are gauge invariant, their propagators have a particle pole structure and are free from infrared divergences. Finally, we discuss the impact of the soft corrections on the entanglement measures.Comment: 4 pages, 2 figures, RevTeX. Version 2: Some references update

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    GSH Attenuates Organ Injury and Improves Function after Transplantation of Fatty Livers

    Get PDF
    Ischemia-reperfusion injury (IRI) is increased after transplantation of steatotic livers. Since those livers are increasingly used for transplantation, protective strategies must be developed. Reactive oxygen species (ROS) play a key role in hepatic IRI. In lean organs, glutathione (GSH) is an efficient scavenger of ROS, diminishing IRI. The aim of this study was to evaluate whether GSH also protects steatotic allografts from IRI following transplantation. Fatty or lean livers were explanted from 10-week-old obese or lean Zucker rats and preserved (obese 4 h, lean 24 h) in hypothermic University of Wisconsin solution. Arterialized liver transplantation was then performed in lean syngeneic Zucker rats. Recipients of fatty livers were treated with GSH (200 mu mol/h/kg) or saline during reperfusion (2 h, n = 5). Parameters of hepatocellular damage and bile flow were measured. Transplantation of steatotic livers enhanced early reperfusion injury compared to lean organs as measured by increased aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase plasma levels. Bile flow was also reduced in steatotic grafts. Intravenous administration of GSH effectively decreased liver damage in fatty allografts and resulted in improved bile flow. Intravenous application of GSH effectively reduces early IRI in steatotic allografts and improves recovery of these marginal donor organs following transplantation. Copyright (C) 2010 S. Karger AG, Base

    Fuzzy Topology, Quantization and Gauge Invariance

    Full text link
    Dodson-Zeeman fuzzy topology considered as the possible mathematical framework of quantum geometric formalism. In such formalism the states of massive particle m correspond to elements of fuzzy manifold called fuzzy points. Due to their weak (partial) ordering, m space coordinate x acquires principal uncertainty dx. It's shown that m evolution with minimal number of additional assumptions obeys to schroedinger and dirac formalisms in norelativistic and relativistic cases correspondingly. It's argued that particle's interactions on such fuzzy manifold should be gauge invariant.Comment: 12 pages, Talk given on 'Geometry and Field Theory' conference, Porto, July 2012. To be published in Int. J. Theor. Phys. (2015

    Casimir Friction Force and Energy Dissipation for Moving Harmonic Oscillators

    Full text link
    The Casimir friction problem for a pair of dielectric particles in relative motion is analyzed, utilizing a microscopic model in which we start from statistical mechanics for harmonically oscillating particles at finite temperature moving nonrelativistically with constant velocity. The use of statistical mechanics in this context has in our opinion some definite advantages, in comparison with the more conventional quantum electrodynamic description of media that involves the use of a refractive index. The statistical-mechanical description is physical and direct, and the oscillator model, in spite of its simplicity, is nevertheless able to elucidate the essentials of the Casimir friction. As is known, there are diverging opinions about this kind of friction in the literature. Our treatment elaborates upon, and extends, an earlier theory presented by us back in 1992. There we found a finite friction force at any finite temperature, whereas at zero temperature the model led to a zero force. As an additional development in the present paper we evaluate the energy dissipation making use of an exponential cutoff truncating the relative motion of the oscillators. For the dissipation we also establish a general expression that is not limited to the simple oscillator model.Comment: 12 pages, no figures. Discussion extended, references added. To appear in Europhysics Letter

    Spin and orbital angular momentum in gauge theories (II): QCD and nucleon spin structure

    Full text link
    Parallel to the construction of gauge invariant spin and orbital angular momentum for QED in paper (I) of this series, we present here an analogous but non-trivial solution for QCD. Explicitly gauge invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task, and opens a more promising avenue towards the understanding of the nucleon spin structure.Comment: 3 pages, no figure; presented by F. Wang at NSTAR200

    Quantum Mechanical Properties of Bessel Beams

    Full text link
    Bessel beams are studied within the general framework of quantum optics. The two modes of the electromagnetic field are quantized and the basic dynamical operators are identified. The algebra of these operators is analyzed in detail; it is shown that the operators that are usually associated to linear momentum, orbital angular momentum and spin do not satisfy the algebra of the translation and rotation group. In particular, what seems to be the spin is more similar to the helicity. Some physical consequences of these results are examined.Comment: 17 pages, no figures. New versio

    On the forward cone quantization of the Dirac field in "longitudinal boost-invariant" coordinates with cylindrical symmetry

    Full text link
    We obtain a complete set of free-field solutions of the Dirac equation in a (longitudinal) boost-invariant geometry with azimuthal symmetry and use these solutions to perform the canonical quantization of a free Dirac field of mass MM. This coordinate system which uses the 1+1 dimensional fluid rapidity η=1/2ln[(tz)/(t+z)]\eta = 1/2 \ln [(t-z)/(t+z)] and the fluid proper time τ=(t2z2)1/2\tau = (t^2-z^2)^{1/2} is relevant for understanding particle production of quarks and antiquarks following an ultrarelativistic collision of heavy ions, as it incorporates the (approximate) longitudinal "boost invariance" of the distribution of outgoing particles. We compare two approaches to solving the Dirac equation in curvilinear coordinates, one directly using Vierbeins, and one using a "diagonal" Vierbein representation
    corecore