18 research outputs found

    Utilization of fly ash in concrete

    Get PDF
    Fly ash, a by-product of coal burning power plants, is produced in large quantities each year. It is commonly known that fly ash possesses pozzolanic behavior which can enhance the properties of concrete. Due to a lack of proper understanding on the formation of fly ash and its performance in concrete, the question of quality assurance has frequently been a major concern of engineers using fly ash in their construction projects. As a result, much fly ash is disposed of as waste material in landfills. Recent environmental concerns and a shortage of landfill space have rapidly escalated the disposal cost of fly ash and therefore, the need to seek better utilization of fly ash in concrete is then critical. The objective of this investigation is to study the effect of fly ash on the strength development of mortar and concrete and to develop models to predict its performance in these cementitious composites. The fly ash used was carefully selected and defined as to its origination, formation, physical and chemical compositions, and the storage condition. The original fly ash was fractionated into six particle size ranges, each having a relatively uniform particle size, with maximum sizes ranging from 5 to 300 microns. The rate of strength gain of these fly ash concretes was monitored from 1 to 180 days. The compressive strength for each series was correlated to the conditions of fly ash used to determine the major parameters affecting the performance of fly ash in mortar and concrete. The results from this study show that the particle size of fly ash has a significant effect on the strength development of concrete. The combustion condition in the boiler has some influence on the performance of fly ash in cementitious composites. Of particular importance is the finding that certain portions of fly ash when used as cement replacement can improve the strength of concrete beyond normal cement as early as 14 days. A correlation to predict the compressive strength of fly ash concrete is proposed and provides good agreement with experimental results both from this study as well as from other investigators

    Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Get PDF
    This research studies the effects of W/B ratios and palm oil fuel ash (POFA) on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B) ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete

    Properties of concrete made from industrial wastes containing calcium carbide residue palm oil fuel ash rice husk-bark ash and recycled aggregates

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ„āļ­āļ™āļāļĢāļĩāļ•āļ™āļĩāđ‰āļ–āļđāļāļ—āļģāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ—āļąāđ‰āļ‡āđƒāļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒ-āđ„āļšāļ”āđŒ (CCR) āļœāļŠāļĄāđāļĒāļāļāļąāļšāđ€āļ–āđ‰āļēāļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™ (PA) āđāļĨāļ°āđ€āļ–āđ‰āļēāđāļāļĨāļšāđ€āļ›āļĨāļ·āļ­āļāđ„āļĄāđ‰ (RA) āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāļ„āļ­āļ™āļāļĢāļĩāļ• āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ–āļđāļāļ™āļģāļĄāļēāđƒāļŠāđ‰āđāļ—āļ™āļ—āļĩāđˆāļĄāļ§āļĨāļĢāļ§āļĄāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđ€āļžāļ·āđˆāļ­āļ—āļĩāđˆāļŦāļĨāđˆāļ­āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• (āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA) āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ„āļ”āđ‰āđāļāđˆ āļāļģāļĨāļąāļ‡āļ­āļąāļ” āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āđāļĨāļ°āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļšāļ„āļļāļĄ (āļ„āļ­āļ™āļāļĢāļĩāļ• CON) āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļĒāļķāļ”āđ€āļāļēāļ°āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨ āđāļĄāđ‰āļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļĄāļĩāļŦāļĢāļ·āļ­āđ„āļĄāđˆāļĄāļĩāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒ āļāļēāļĢāļžāļąāļ’āļ™āļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļ„āļĨāđ‰āļēāļĒāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ• CON āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļĒāļąāļ‡āļŠāļĩāđ‰āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļŠāļ™āļīāļ”āđƒāļŦāļĄāđˆ āđ€āļžāļĢāļēāļ°āļ„āļ­āļ™āļāļĢāļĩāļ•āđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļĨāļ”āļ›āļąāļāļŦāļēāļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄAbstractThis concrete was made by using several industrial wastes in both binder and aggregates. Calcium carbide residue (CCR) mixed separately with palm oil fuel ash (PA) and rice husk-bark ash (RA), and was used as a binder instead of Portland cement in the concrete mixture. Furthermore, recycled aggregates were fully replaced natural aggregates in order to cast concrete specimens (CCR-PA and CCR-RA concretes). Concrete properties namely compressive strength, chloride migration, and water permeability of CCR-PA and CCR-RA concretes were evaluated and compared with the conventional concrete (CON concrete). The results indicated that CCR-PA and CCR-RA binders could be used as a new cementitious material in recycled aggregate concrete, even though the CCR-PA and CCR-RA binders contained no Portland cement. The characteristic compressive strength of CCR-PA and CCR-RA concretes developed similar to CON concrete. Moreover, CCR-PA and CCR-RA binders in the mixtures were effectively improving the chloride migration and water permeability of recycled aggregate concretes. These results also suggested that CCR-PA and CCR-RA concretes can be used as a new environmental friendly concrete because of these concretes can reduce as much as CO2 emissions and environmental problems

    Effect of Fly Ash on Chloride Penetration and Compressive Strength of Reclycled and Natural Aggregate Concrete under 5-year Exposure in Marine Environment

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļœāļĨāļ‚āļ­āļ‡āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ•āđˆāļ­āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļ°āđ€āļĨāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 5 āļ›āļĩ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļˆāļēāļāđāļĄāđˆāđ€āļĄāļēāļ°āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆ 1 āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 0, 15, 25, 35 āđāļĨāļ° 50 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđāļĨāļ°āđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ (W/B) āđ€āļ—āđˆāļēāļāļąāļš 0.40 āđāļĨāļ° 0.45 āļŠāļģāļŦāļĢāļąāļšāļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđāļĨāļ° 0.45 āļŠāļģāļŦāļĢāļąāļšāļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļŦāļĨāđˆāļ­āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĢāļ‡āļĨāļđāļāļšāļēāļĻāļāđŒāļ‚āļ™āļēāļ” 200×200×200 āļĄāļĄ.3 āļŠāļģāļŦāļĢāļąāļšāļ—āļ”āļŠāļ­āļšāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ„āļĨāļ­āđ„āļĢāļ”āđŒāđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āļŦāļĨāļąāļ‡āļˆāļēāļāļšāđˆāļĄāļ„āļ­āļ™āļāļĢāļĩāļ•āđƒāļ™āļ™āđ‰āļģāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē28 āļ§āļąāļ™ āļ™āļģāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļ”āļŠāļ­āļšāđ„āļ›āđāļŠāđˆāđƒāļ™āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļ°āđ€āļĨāļšāļĢāļīāđ€āļ§āļ“āļŠāļēāļĒāļāļąāđˆāļ‡āđƒāļ™āļŠāļ āļēāļ§āļ°āđ€āļ›āļĩāļĒāļāļŠāļĨāļąāļšāđāļŦāđ‰āļ‡ āđ‚āļ”āļĒāđ€āļāđ‡āļšāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļ”āļŠāļ­āļšāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāļ—āļąāđ‰āļ‡āļŦāļĄāļ” āđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļ­āļēāļĒāļļāđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨ 5 āļ›āļĩ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļļāļāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļĄāļĩāļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŦāļĨāļąāļ‡āđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 5 āļ›āļĩ āļŠāđˆāļ§āļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ—āļļāļāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŦāļĨāļąāļ‡āđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ—āļĩāđˆāļ­āļēāļĒāļļ 5 āļ›āļĩ āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļāļ­āļēāļĒāļļāļšāđˆāļĄ 28 āļ§āļąāļ™ āļāļēāļĢāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆ 1 āđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļĨāļ‡āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™āļ‹āļķāđˆāļ‡āđƒāļŦāđ‰āļœāļĨāđ„āļ›āđƒāļ™āļ—āļīāļĻāļ—āļēāļ‡āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļ—āļąāđ‰āļ‡āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđ‚āļ”āļĒāļžāļšāļ§āđˆāļē āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ­āļĒāđˆāļēāļ‡āļ™āđ‰āļ­āļĒāļĢāđ‰āļ­āļĒāļĨāļ° 15 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđƒāļŦāđ‰āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāļ•āđˆāļģāļāļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ•āļ˜āļĢāļĢāļĄāļ”āļēāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļ‹āļķāđˆāļ‡āļĄāļĩāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.45This research studied the effect of fly ash on chloride diffusion coefficient and compressive strength of both recycled and natural aggregate concretes exposed to marine environment for 5 years. Mae-Moh fly ash was used to replace Portland cement at the percentages of 0, 15, 25, 35, and 50 by the weight of binder with various water to binder (W/B) ratios of 0.40 and 0.45 in recycled aggregate mixtures and a W/B ratio of 0.45 in natural aggregate mixtures. Concrete cube specimens of 200×200×200 mm3 were cast and cured in fresh water for 28 days and then were placed in a tidal zone of marine environment. The compressive strengths of the concrete exposed to marine environment for 5 years as well as the total chloride diffusion coefficients of the specimens were determined. The Results revealed that the compressive strengths of recycled aggregate concretes decreased after being exposed in marine environment for 5 years, whereas those of natural aggregate concretes and fly ash increased after 28 days of curing. Evidently, higher in fly ash contents would lower chloride diffusion coefficients of both recycled and natural aggregate concretes. Furthermore, use of fly ash as low as 15% replacement by weight in recycled aggregated concretes could provide lower chloride diffusion coefficient compared to Portland cement containing natural aggregate concrete with W/B of 0.45

    Enhanced durability of concrete with palm oil fuel ash in a marine environment

    No full text
    This research aimed to enhance the durability of concrete at a marine site by using ground palm oil fuel ash (GPOFA). Portland cement type I had been replaced by GPOFA at various replacement levels of 0–50% by weight of binder, with three different strength grades. Cubical concrete specimens with embedded steel bars at various covering depths were cast to determine chloride ingression and steel corrosion. After curing for 28 days, the concrete specimens were placed in a marine environment. The compressive strength, total and free chloride ingress, and embedded steel corrosion of the specimens were determined after subjecting them to tidal zone conditions for 7 years. The results show that the concrete specimens containing GPOFA at replacement levels of 15–35% by weight of binder provided the best durability performances at the marine site, with lower compressive strength loss and higher chloride and steel corrosion resistances than ordinary Portland cement concrete. This indicates that GPOFA in a replacement levels of 15–35% by weight of binder, with a maximum W/B ratio of 0.45, can be used efficiently in concrete to enhance the service life of marine concrete structures

    Evaluation of Heat Evolution of Pastes Containing High Volume of Ground River Sand and Ground Granulated Blast Furnace Slag

    No full text
    This paper investigated the heat evolution of pastes containing inert and active materials with different particle sizes. Ground river sand was used as an inert material while ground granulated blast furnace (GGBF) slag was used as an active material. Ground river sand (GRS) and GGBF slag were ground to have the same particle size and were used separately as a replacement of Portland cement type I at rates of 50 – 70 % by weight of the binder. Heat evolution of pastes containing GRS and GGBF slag was measured using an isothermal conduction calorimeter up to 72 h. The results showed that GRS with different particle sizes had a slight effect on the heat evolution of pastes. GGBF slag with median particle size d50 of 4.4 ξm and d50 of 17.8 ξm had a small effect on the heat evolution of pastes during the first 24 h, and the pastes also had very low heat evolution for up to 72 h. At the same replacement rate of Portland cement, however, the heat evolution due to the slag reaction was slightly increased when the particle size of the GGBF slag was decreased. Finally, the higher is the cement replacement by GGBF slag, the higher is the slag reaction

    āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļˆāļēāļāđ€āļ–āđ‰āļēāđāļāļĨāļšāđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļŠāļ™āļīāļ”āļĢāļąāļšāļ™āđ‰āļģāļŦāļ™āļąāļUtilization of Rice Husk Ash-based Geopolymer in Hollow Load-bearing Concrete Masonry Block

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļœāļĨāļ‚āļ­āļ‡āļ›āļĢāļīāļĄāļēāļ“āļĄāļ§āļĨāļĢāļ§āļĄāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒ (NaOH) āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļšāđˆāļĄāļ•āđˆāļ­āļāļģāļĨāļąāļ‡āļ­āļąāļ” āđāļĨāļ°āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļŠāļ™āļīāļ”āļĢāļąāļšāļ™āđ‰āļģāļŦāļ™āļąāļāļˆāļēāļāļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļˆāļēāļāđ€āļ–āđ‰āļēāđāļāļĨāļšāļˆāļēāļāđ‚āļĢāļ‡āļ‡āļēāļ™āđ‚āļ”āļĒāļ•āļĢāļ‡ āđ€āļ•āļĢāļĩāļĒāļĄāļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļˆāļēāļāļˆāļēāļāđ€āļ–āđ‰āļēāđāļāļĨāļšāļ—āļĩāđˆāđ„āļĄāđˆāļœāđˆāļēāļ™āļāļēāļĢāļšāļ”āđāļĨāļ°āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™ (āđ€āļ–āđ‰āļēāđāļāļĨāļš : āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™ āđ€āļ—āđˆāļēāļāļąāļš 50 : 50 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļ) āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ• (Na2SiO3) āđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒ (NaOH) āđ‚āļ”āļĒāđƒāļŠāđ‰āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒ āđ€āļ—āđˆāļēāļāļąāļš 12, 14, 16 āđāļĨāļ° 18 āđ‚āļĄāļĨāļēāļĢāđŒ āđāļĨāļ°āđƒāļŠāđ‰āļ›āļĢāļīāļĄāļēāļ“āļŦāļīāļ™āļāļļāđˆāļ™āđ€āļ›āđ‡āļ™āļĄāļ§āļĨāļĢāļ§āļĄāđāļ—āļ™āļ—āļĩāđˆāđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ (āđ€āļ–āđ‰āļēāđāļāļĨāļšāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™) : āļŦāļīāļ™āļāļļāđˆāļ™ āđ€āļ—āđˆāļēāļāļąāļš 1 : 4, 1 : 6 āđāļĨāļ° 1 : 8 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļ āļŦāļĨāļąāļ‡āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āļģāļāļēāļĢāļ­āļąāļ”āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāđƒāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ­āļąāļ”āļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļ āđ‚āļ”āļĒāļšāđˆāļĄāļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāđƒāļ™āļ­āļēāļāļēāļĻāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļŦāđ‰āļ­āļ‡ (25°C) āđāļĨāļ°āļšāđˆāļĄāđƒāļ™āļ•āļđāđ‰āļ­āļšāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 65°C āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 24 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļˆāļēāļāļ™āļąāđ‰āļ™āļšāđˆāļĄāđƒāļ™āļ­āļēāļāļēāļĻāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āļˆāļ™āļ–āļķāļ‡āļ­āļēāļĒāļļāļ—āļ”āļŠāļ­āļš āđ‚āļ”āļĒāļ—āļ”āļŠāļ­āļšāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ—āļĩāđˆāļ­āļēāļĒāļļ 7, 14, āđāļĨāļ° 28 āļ§āļąāļ™ āļ•āļĨāļ­āļ”āļˆāļ™āļ—āļ”āļŠāļ­āļšāļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļ—āļĩāđˆāļ­āļēāļĒāļļ 28 āļ§āļąāļ™ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļāļēāļĢāđƒāļŠāđ‰āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ NaOH āļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āđāļĨāļ°āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļĄāļĩāļ„āđˆāļēāļĨāļ”āļĨāļ‡ āđ‚āļ”āļĒāđ€āļŦāđ‡āļ™āļœāļĨāļŠāļąāļ”āđ€āļˆāļ™āđƒāļ™āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļ›āļĢāļīāļĄāļēāļ“āļ•āđˆāļģāļĄāļēāļāļāļ§āđˆāļēāļ›āļĢāļīāļĄāļēāļ“āļŠāļđāļ‡ āļāļēāļĢāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļœāļŠāļĄāđƒāļ™āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļĄāļēāļāļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļĨāļ”āļĨāļ‡ āļ•āļĨāļ­āļ”āļˆāļ™āļāļēāļĢāđƒāļŠāđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđƒāļ™āļāļēāļĢāļšāđˆāļĄ 65°C āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 24 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļ āļŠāļđāļ‡āļāļ§āđˆāļēāļāļĨāļļāđˆāļĄāļ—āļĩāđˆāļšāđˆāļĄāđƒāļ™āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡ 25°C āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™ āđ‚āļ”āļĒāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļšāđˆāļĄāļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ•āđˆāļ­āļāļēāļĢāđ€āļžāļīāđˆāļĄāļāļģāļĨāļąāļ‡āļ­āļąāļ”āđƒāļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ NaOH āļ•āđˆāļģāļĄāļēāļāļāļ§āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ NaOH āļŠāļđāļ‡This research aims to study the effects of aggregate content, sodium hydroxide (NaOH) concentration and curing temperature on compressive strength and water absorption of load-bearing geopolymer concrete block. Original coarse rice husk ash blended with fly ash at the percentage by weight of 50 : 50 was used as a binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were also mixed with the binder to produce geopolymer concrete block. NaOH solution concentrations were varied at 12, 14, 16, and 18 molars. Dust limestone was also used as an aggregate in the mixture at various weight ratios between the binder (rice husk ash blended with fly ash) to aggregate of 1 : 4, 1 : 6 and 1 : 8. The geopolymer concrete blocks were produced by using the Cinva-Ram machine. The specimens were then arranged into two groups at the temperatures of 25°C (room temperature) and 65°C for the first 24-hour curing and then all the specimens were cured in room temperature until the testing ages. The geopolymer concrete block specimens were tested for compressive strength at 7, 14, and 28 days and its water absorption was tested at 28 days. The results showed that higher NaOH solution concentration led to higher compressive strength and lower water absorption of geopolymer concrete block. These effects were evidently found in geopolymer concrete blocks with low aggregate content than in those with high aggregate content. Increase of aggregate content in the mixture also decrease compressive strength of geopolymer concrete block. In addition, geopolymer concrete blocks, which were cured at 65°C for 24 hours apparently yielded higher compressive strength than those cured at 25°C (room temperature). Besides, high curing temperature has a greatter effect to increase compressive strength of geopolymer concrete block with lower NaOH concentration than that with higher NaOH concentration

    Solidification of heavy metal sludge using cement, fly ash and silica fume

    No full text
    405-414In this paper, the properties of solidified waste using ordinary Portland cement (OPC) containing silica fume (SF) and fly ash (FA) as a binder are reported. Silica fume and fly ash are used to partially replace ordinary Portland cement by 10% and 30% by weight, respectively. Plating sludge is used of 40, 50 and 60% by weight of the binder. A water to binder (w/b) ratio of 0.40 is used for all of the mixtures. The compressive strength of the solidified wastes is investigated. The leachability of heavy metals is determined by TCLP and XRD, and XRF is used to study the chemical properties, while the fractured surfaces are studied by SEM, and the pore size distribution is studied by MIP. The test results show that the setting time of the blended cement increased as the amount of plating sludge in the mix increased. In addition, the compressive strength of the blended cement increased with increasing curing duration time but at a decreasing rate. The compressive strengths at 28 days of the SF solidified waste mixes are 12.4, 2.7, 1.34 MPa and those of FA solidified waste mixes are 1.1, 1.0, 0.5 MPa at the plating sludge of 40, 50 and 60% by weight of the binder, respectively. The quality of the solidified waste containing SF and FA is better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates are within the limits specified by the US EPA. </span

    Evaluation of Strengths from Cement Hydration and Slag Reaction of Mortars Containing High Volume of Ground River Sand and GGBF Slag

    No full text
    This paper investigates the cement hydration, and the slag reaction contributes to the compressive strengths of mortars mixed with ground river sand (GRS) and ground-granulated blast furnace (GGBF) slag with different particle sizes. GRS (inert material) and GGBF slag (reactive material) were ground separately until the median particle sizes of 32 ± 1, 18 ± 1, and 5 ± 1 micron and used to replace Portland cement (PC) in large amount (40–60%) by weight of the binder. The results showed that, at the early age, the compressive strength obtained from the cement hydration was higher than that obtained from the slag reaction. The results of compressive strength also indicated that the GGBF slag content and particle size play important roles in the slag reaction at the later ages, whereas cement hydration is more prominent at the early ages. Although the results could be expected from the use of GGBF slag to replace PC in mortar or concrete, this study had presented the values of the compressive strength along with ages and the finenesses of GGBF slag that contributed from cement hydration and from GGBF slag reaction

    Development of Concrete Paving Blocks Prepared from Waste Materials without Portland Cement

    No full text
    This experiment used three types of waste materials: calcium carbide residue, fly ash, and recycled concrete aggregate to develop concrete paving blocks. The blocks had calcium carbide residue and fly ash as a binder without ordinary Portland cement (OPC) and combined with 100 % of recycled concrete aggregate. The concrete paving blocks were 10 × 10 × 20 cm and were formed using a pressure of 6 or 8 MPa. The binder-to-aggregate ratio was held constant at 1:3 by weight, while the water-to-binder ratios were 0.30, 0.35, and 0.40. The effects of the water-to-binder ratios and fineness of the binder on the compressive strength, flexural strength, abrasion resistance, and water absorption of the concrete paving blocks were determined and compared with those of TIS 827 and ASTM C1319 standards. The results revealed that by applying this procedure, we were able to produce an excellence concrete paving block without using OPC. The compressive strength of the concrete paving blocks made from these waste materials was 41.4 MPa at 28 days and increased to 45.3 MPa at 60 days. Therefore, these waste materials can be used as raw materials to manufacture concrete paving blocks without OPC that meet the requirements of 40 MPa and 35 MPa specified by the TIS 827 and ASTM C1319 standards, respectively.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17566</p
    corecore