442 research outputs found
Recommended from our members
Electrical energy requirements for ATW and fusion neutrons
This note compares the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides of fission wastes. Both systems use the same blanket concept but for each source neutron the fusion system must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have the same electrical energy requirement per available blanket neutron when the blanket coverage is comparable and fusion Q {approx} 1, but the fusion plant has only a fraction of the energy requirement when Q {much{underscore}gt} 1. If the blanket thermal energy is converted to electricity, the fusion plant and ATW have comparable net electrical energy outputs per available neutron when Q {>=} 2
Recommended from our members
Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors
The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U/sub 3/Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10/sup 14/ cm/sup -3/s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor
Recommended from our members
U. S. Fusion Energy Future
Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems
The annual cycles of phytoplankton biomass
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six- or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high
Recommended from our members
Design considerations for neutron activation and neutron source strength monitors for ITER
The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system
Recent ecological change in ancient lakes
Ancient lakes are among the best archivists of past environmental change, having experienced more than one full glacial cycle, a wide range of climatic conditions, tectonic events, and long association with human settlements. These lakes not only record long histories of environmental variation and human activity in their sediments, but also harbor very high levels of biodiversity and endemism. Yet, ancient lakes are faced with a familiar suite of anthropogenic threats, which may degrade the unusual properties that make them especially valuable to science and society. In all ancient lakes for which data exist, significant warming of surface waters has occurred, with a broad range of consequences. Eutrophication threatens both native species assemblages and regional economies reliant on clean surface water, fisheries, and tourism. Where sewage contributes nutrients and heavy metals, one can anticipate the occurrence of less understood emerging contaminants, such as pharmaceuticals, personal care products, and microplastics that negatively affect lake biota and water quality. Human populations continue to increase in most of the ancient lakes’ watersheds, which will exacerbate these concerns. Further, human alterations of hydrology, including those produced through climate change, have altered lake levels. Co‐occurring with these impacts have been intentional and unintentional species introductions, altering biodiversity. Given that the distinctive character of each ancient lake is strongly linked to age, there may be few options to remediate losses of species or other ecosystem damage associated with modern ecological change, heightening the imperative for understanding these systems
Recommended from our members
Conceptual design of a divertor for a tokamak experimental power reactor
A design for a Double-Null Poloidal Divertor for a Tokamak EPR is presented which allows remote assembly of the torus and utilizes a standard neutral pumping and heat removal system. (auth
Recommended from our members
Absolute calibration of TFTR neutron detectors for D-T plasma operation
The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator ({approximately}5 {times} 10{sup 7} n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output ({plus_minus}9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about {plus_minus}13%. The NE-451 (ZnS) scintillators and {sup 4}He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of {plus_minus}14% for the scintillators and {plus_minus}15% for the {sup 4}He counters
Recommended from our members
Transport of recycled deuterium to the plasma core in TFTR
The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer
- …