2,359 research outputs found

    Electrical and Structural Analysis of CNT-Metal Contacts in Via Interconnects

    Get PDF
    Vertically aligned carbon nanotubes grown by plasmaenhanced chemical vapor deposition offer a potentially suitable material for via interconnects in next-generation integrated circuits. Key performance-limiting factors include high contact resistance and low carbon nanotube packing density, which fall short of meeting the requirements delineated in the ITRS roadmap for interconnects. For individual carbon nanotube s, contact resistance is a major performance hurdle since it is the dominant component of carbon nanotube interconnect resistance, even in the case of vertically aligned carbon nanotube arrays. In this study, we correlate the carbon nanotube-metal interface nanostructure to their electrical properties in order to elucidate growth parameters that can lead to high density and low contact resistance and resistivity

    Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion

    Get PDF
    In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1–mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA_(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from ∼ 20% to >60% on a single amber codon and from 20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo

    The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-Period Planets

    Get PDF
    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1MJup1 M_{\rm Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2MJup2 M_{\rm Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period >5> 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.Comment: 16 pages, 13 figures. Accepted for publication in Ap

    Contribution of Sediment to High Enterococcus Counts Along the Northern Gulf of Mexico

    Get PDF
    Enumeration of enterococci (EN) bacteria in water is an USEPA approved indicator of fecal pollution and the possible presence of enteric pathogens. Along the northern Gulf of Mexico, the water is shallow with a high organic and particulate load because of the Mississippi River discharge. Disturbance of coastal sediments during wind/wave action caused either by the weather or human activities may increase bacterial counts as a result of increased EN persistence in the water column and/or resuspension of EN in the sediment. The goals of this project are to determine the relationship between organic content and EN counts in the water and whether bacterial resuspension from the sediment contributes to elevated EN counts. We found that EN counts in the water were correlated with wave conditions at seven sites along the Mississippi Gulf Coast. During calm wave conditions, low bacterial levels (1.0 – 227 CFU/100mL) were observed in the water with higher counts in the sediment; the reverse was observed (10 – 351 CFU/100mL) during rough wave conditions. EN counts were positively correlated with organic content of the sediment. Wave activity to keep EN in suspension was apparently critical for high counts. EN counts decreased by 50% in 4 hr from 38 to 17 CFU/100mL in the absence of resuspension and decreased to 1 CFU/100mL after 48 hr. EN in the sediment are not stationary as genetic fingerprinting using REP-PCR showed low persistence of specific isolates over time. Jackknife analysis revealed low similarity among EN isolates from the water and sediment collected on the same day and site during calm wave conditions. This shows that EN are not persisting for long periods in the same area but instead are resuspended and redistributed along the coast. Results from this study provide evidence that high organic content and resuspension of isolates from the sediment during periods of strong wave action contribute to high EN counts. Current research on the survival of EN in estuarine habitats will provide insight on the balance between environmental persistence and fecal pollution in causing high EN counts along beaches in the northern Gulf of Mexico

    Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    Get PDF
    Author's manuscript made available in accordance with the publisher's policy.The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (∼1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior

    The association between distal findings and proximal colorectal neoplasia: a systematic review and meta-analysis

    Get PDF
    Objectives: Whether screening participants with distal hyperplastic polyps (HPs) detected by flexible sigmoidoscopy (FS) should be followed by subsequent colonoscopy is controversial. We evaluated the association between distal HPs and proximal neoplasia (PN)/advanced proximal neoplasia (APN) in asymptomatic, average-risk patients. Methods: We searched Ovid Medline, EMBASE, and the Cochrane Library from inception to 30 June 2016 and included all screening studies that examined the relationship between different distal findings and PN/APN. Data were independently extracted by two reviewers with disagreements resolved by a third reviewer. We pooled absolute risks and odds ratios (ORs) with a random effects meta-analysis. Seven subgroup analyses were performed according to study characteristics. Heterogeneity was characterized with theI2 statistics. Results: We analyzed 28 studies (104,961 subjects). When compared with normal distal findings, distal HP was not associated with PN (OR=1.16, 95% confidence interval (CI)=0.89–1.51,P=0.14,I2=40%) or APN (OR=1.09, 95% CI=0.87–1.36,P=0.39,I2=5%), while subjects with distal non-advanced or advanced adenoma had higher odds of PN/APN. Higher odds of PN/APN were observed for more severe distal lesions. Weaker association between distal and proximal findings was noticed in studies with higher quality, larger sample size, population-based design, and more stringent endoscopy quality-control measures. The Egger’s regression tests showed allP>0.05. Conclusions: Distal HP is not associated with PN/APN in asymptomatic screening population when compared with normal distal findings. Hence, the presence of distal HP alone detected by FS does not automatically indicate colonoscopy referral for all screening participants, as other risk factors of PN/APN should be considered

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Transport On-Demand in a Service Supply Chain Experiencing Seasonal Demand: Managing Persistent Backlogs

    Get PDF
    Successful transport-on-demand (TOD) requires having sufficient capacity in the right location to meet demand when it occurs. Consumer and recovery vehicle locations are variable, and the vehicle recovery service is contracted out in the service supply chain. This research aims to identify how different variables/factors influence backlogs during busy periods and service performance. A case study of a vehicle recovery company was undertaken using observation and analysis of historical data to map the process. Discrete event simulation (DES) was used to model several processes to evaluate the operational impact of changes. We find that ensuring complete and accurate information transmission over the chain supports the TOD service by enhancing the ‘allocation’ activity of the dispatch center staff; i.e., pairing vehicles to consumer requirements. Simple changes to how information is collected, shared, and used in the service supply chain can significantly reduce the percentage of jobs taking more than a given time

    Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression.

    Get PDF
    Gastrointestinal stromal tumors (GIST) arise within the interstitial cell of Cajal (ICC) lineage due to activating KIT/PDGFRA mutations. Both ICC and GIST possess primary cilia (PC), which coordinate PDGFRA and Hedgehog signaling, regulators of gastrointestinal mesenchymal development. Therefore, we hypothesized that Hedgehog signaling may be altered in human GIST and controls KIT expression. Quantitative RT-PCR, microarrays, and next generation sequencing were used to describe Hedgehog/PC-related genes in purified human ICC and GIST. Genetic and pharmacologic approaches were employed to investigate the effects of GLI manipulation on KIT expression and GIST cell viability. We report that Hedgehog pathway and PC components are expressed in ICC and GIST and subject to dysregulation during GIST oncogenesis, irrespective of KIT/PDGFRA mutation status. Using genomic profiling, 10.2% of 186 GIST studied had potentially deleterious genomic alterations in 5 Hedgehog-related genes analyzed, including in the PTCH1 tumor suppressor (1.6%). Expression of the predominantly repressive GLI isoform, GLI3, was inversely correlated with KIT mRNA levels in GIST cells and non-KIT/non-PDGFRA mutant GIST. Overexpression of the 83-kDa repressive form of GLI3 or small interfering RNA-mediated knockdown of the activating isoforms GLI1/2 reduced KIT mRNA. Treatment with GLI1/2 inhibitors, including arsenic trioxide, significantly increased GLI3 binding to the KIT promoter, decreased KIT expression, and reduced viability in imatinib-sensitive and imatinib-resistant GIST cells. These data offer new evidence that genes necessary for Hedgehog signaling and PC function in ICC are dysregulated in GIST. Hedgehog signaling activates KIT expression irrespective of mutation status, offering a novel approach to treat imatinib-resistant GIST
    • …
    corecore