118 research outputs found

    Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature

    Get PDF
    This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data

    Analysis of Screen Channel LAD Bubble Point Tests in Liquid Oxygen at Elevated Temperature

    Get PDF
    The purpose of this paper is to examine the key parameters that affect the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid oxygen at elevated pressures and temperatures. An in depth analysis of the effect of varying temperature, pressure, and pressurization gas on bubble point is presented. Testing of a 200 x 1400 and 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenics Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 92 to 130K and 0.138 - 1.79 MPa. Bubble point is shown to be a strong function of temperature with a secondary dependence on pressure. The pressure dependence is believed to be a function of the amount of evaporation and condensation occurring at the screen. Good agreement exists between data and theory for normally saturated liquid but the model generally under predicts the bubble point in subcooled liquid. Better correlation with the data is obtained by using the liquid temperature at the screen to determine surface tension of the fluid, as opposed to the bulk liquid temperature

    Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    Get PDF
    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures

    Two-Phase Convection Heat Transfer Correlations for Liquid Hydrogen Pipe Chilldown

    Get PDF
    Recently, heat transfer correlations based on liquid nitrogen (LN2) and liquid hydrogen (LH2) pipe quenching data were developed to improve the predictive accuracy of lumped node codes like SINDA/FLUINT and the Generalized Fluid System Simulation Program (GFSSP). After implementing these correlations into both programs, updated model runs showed strong improvement in LN2 pipe chilldown modeling but only modest improvement in LH2 modeling. Due to large differences in thermal and fluid properties between the two fluids, results indicated a need to develop a separate set of LH2-only correlations to improve the accuracy of the simulations. This paper presents a new set of two-phase convection heat transfer correlations based on LH2 pipe quenching data. A correlation to predict the bulk vapor temperature was developed after analysis showed that high amounts of thermal nonequilibrium of the liquid and vapor phases occurred during film boiling of LH2. Implemented in a numerical model, the new correlations achieve a mean absolute error of 19.5 K in the predicted wall temperature when compared to recent LH2 pipe chilldown data, an improvement of 40% over recent GFSSP predictions. This correlation set can be implemented in simulations of the transient LH2 chilldown process. Such simulations are useful for predicting the chilldown time and boil-off mass of LH2 for applications such as the transfer of LH2 from a ground storage tank to the rocket vehicle propellant tank, or through a rocket engine feedline during engine startup

    Numerical Modeling of Saturated Boiling in a Heated Tube

    Get PDF
    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data

    Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    Get PDF
    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results

    Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    Get PDF
    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed

    Numerical Modeling of Boiling in a Heated Tube

    Get PDF
    This paper presents numerical models of boiling in a heated tube using the Generalized Fluid System Simulation Program (GFSSP), a finite-volume-based general-purpose flow network code developed at NASA/Marshall Space Flight Center. The heated tube is discretized into a one-dimensional array of nodes and branches to represent the flow of liquid and vapor in a tube with a prescribed pressure differential. The solid wall is also discretized into solid nodes and conductors to allow for heat transfer between the wall and the fluid. The conservation equations of mass, momentum, and energy of the fluid are solved simultaneously with the energy conservation equation for the solid wall. Two experimental configurations of fluid flowing in a vertical tube have been simulated, one with water and the other with liquid hydrogen. This paper compares experimental data with numerical predictions based on four different published correlations for boiling heat transfer coefficients. Three of these correlations are applicable to the saturated vertical flow conditions of the experiments. One of them is applicable to film boiling and has been used for the liquid hydrogen experiment, which was in film boiling regime. For the case of boiling water, the predictions of wall temperatures using the boiling heat transfer correlations agreed well with the experimental results. However, in the case of boiling hydrogen larger discrepancies were observed between the experimental data and numerical predictions

    The 26th Space Cryogenic Workshop: Overview, Description of Presentations, and List of Abstracts

    Get PDF
    This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015

    Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Get PDF
    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results
    corecore