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ABSTRACT: 

 

Recently, heat transfer correlations based on liquid nitrogen (LN2) and liquid hydrogen (LH2) pipe 

quenching data were developed to improve the predictive accuracy of lumped node codes like 

SINDA/FLUINT and the Generalized Fluid System Simulation Program (GFSSP). After 

implementing these correlations into both programs, updated model runs showed strong 

improvement in LN2 pipe chilldown modeling but only modest improvement in LH2 modeling. 

Due to large differences in thermal and fluid properties between the two fluids, results indicated a 

need to develop a separate set of LH2-only correlations to improve the accuracy of the simulations. 

This paper presents a new set of two-phase convection heat transfer correlations based on LH2 pipe 

quenching data. A correlation to predict the bulk vapor temperature was developed after analysis 

showed that high amounts of thermal nonequilibrium of the liquid and vapor phases occurred 

during film boiling of LH2. Implemented in a numerical model, the new correlations achieve a 

mean absolute error of 19.5 K in the predicted wall temperature when compared to recent LH2 pipe 

chilldown data, an improvement of 40% over recent GFSSP predictions. This correlation set can 

be implemented in simulations of the transient LH2 chilldown process. Such simulations are useful 

for predicting the chilldown time and boil-off mass of LH2 for applications such as the transfer of 

LH2 from a ground storage tank to the rocket vehicle propellant tank, or through a rocket engine 

feedline during engine startup.  
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Nomenclature 

cp  specific heat capacity at constant pressure [J/kg-K] 

D  inner diameter of tube [m] 

G  mass flux [kg/m2-s] 

g  gravity [m/s2] 

h  heat transfer coefficient [W/m2-K] 

hfg  heat of vaporization [J/kg] 

Ja  Jakob number, cp(Tw – Tsat)/hfg 

k  thermal conductivity [W/m-K] 
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K  fitting parameter in quality calculation 

L  length from quenching front [m] 

Nu  Nusselt number, hD/k 

P  pressure [Pa] 

Pr  Prandtl number, cpµ/k 

q''  heat flux [W/m2] 

Re   Reynolds number, GD/µ 

Retp   two-phase Reynolds number, GDxa/(αµv,f) 

T  temperature [K] 

WeD  Weber number, G2D/(ργ) 

xa  actual quality 

xe  equilibrium quality 

 

Greek 

α  vapor volume fraction 

γ  surface tension [N/m] 

µ  dynamic viscosity [Pa-s] 

ρ  density [kg/m3] 

 

Subscripts 

cr  at the critical state 

DB  Dittus-Boelter 

DF  dispersed flow 

DNB  at the departure of nucleate boiling 

fb  film boiling 

f  at the film temperature 

IAF  inverted annular flow 

l  liquid 

NB  nucleate boiling 

sat  at the saturation state 

SP  single-phase 

TB  transition boiling 

v  bulk vapor 

w  wall 

wet  at the rewet temperature, or Leidenfrost temperature 

 

1 Introduction 

The transfer of cryogenic propellant through a pipe that is initially at room temperature results in 

a two-phase flow boiling process that ensues until the pipe is cooled to the liquid temperature. 

Generally, the flow starts in a film boiling regime, in which the wall is above the Leidenfrost 

temperature, and passes through the reverse boiling curve from film boiling to transition boiling 

to nucleate boiling to single-phase liquid convection. At the initial high wall temperatures, the pipe 

wall is covered by a vapor blanket, and any approaching liquid evaporates entirely or is pushed 

away by the propulsive force of evaporation before touching the wall. Once the pipe is cooled to 

the Leidenfrost temperature, the liquid sporadically touches the wall, such that a chaotic mixture 

of film and nucleate boiling occurs on the surface. At the temperature corresponding to the critical 
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heat flux, the liquid can make full contact with the wall and the flow is in the nucleate boiling 

regime. The pipe will continue to cool past the onset of nucleate boiling. Below this temperature, 

the wall superheat is too low to sustain nucleate boiling, and the only mode of heat transfer is 

single-phase liquid convection. 

 

In recent years, there has been a growing interest in the prediction of the heat transfer during 

cryogenic pipe chilldown.  For a detailed description of previous experiments and correlation 

development prior to 2016, the reader is referred to (Darr et al. 2019). Hartwig et al. (2016) 

compared existing film boiling, nucleate boiling, and critical heat flux (CHF) correlations available 

in the literature against liquid hydrogen (LH2) and liquid nitrogen (LN2) chilldown data. It was 

determined that many of that existing correlations over-predicted heat transfer and that significant 

model improvements were warranted. Darr et al. (2015) developed a set of cryogenic pipe 

chilldown heat transfer correlations fit to LN2 data with the flow oriented downward in the same 

direction as gravity. A numerical model that implemented the new correlations was able to predict 

the transient pipe wall temperature with good accuracy. Darr et al. (2016b) provided an updated 

version of these correlations for LN2 pipe chilldown data in 9 different directions with respect to 

gravity (experiment described in Darr et al. 2016a). Jin et al. (2018) compared some existing 

correlations against recently conducted low-Reynolds LN2 data and found good agreement over 

the range of 26 – 74 kg/m2s. Singh et al. (2019) also recently compared flow visualization with 

void fraction predictions for LN2 chilldown.  Darr et al. (2019a) provided a new set of cryogenic 

chilldown correlations that was fit to both LH2 and LN2 data. These latest correlations were 

implemented into the lumped-node codes SINDA/FLUINT and the Generalized Fluid System 

Simulation Program (GFSSP) to predict the pipe wall temperature during chilldown (Sakowski et 

al. 2018, Leclair et al. 2018). After implementing the correlations from Darr et al. (2019a) into 

both programs, results showed strong improvement in LN2 pipe chilldown modeling but only 

modest improvement in LH2 modeling. For LH2, the correlations generally underpredicted the 

experimental data, so that the time for the pipe to cool to the liquid temperature was predicted to 

take longer than the test. The proposed reason for this discrepancy that this paper puts forward is 

that the correlations from Darr et al. (2019a) do not correctly model the relationship between the 

wall-to-fluid heat flux and the quality at medium to high quality flows. 

 

In the paper comparing GFSSP results to data, the best results for LH2 were achieved by using the 

single-phase Dittus-Boelter heat transfer correlation for the entire boiling regime (Leclair et al. 

2018). This is most likely because most of the pipe is in the single-phase vapor regimes during 

chilldown. At the start of pipe chilldown, there is a high heat flux near the entrance of the tube that 

quickly brings the quality of the flow towards a value of one before it reaches a far distance down 

the pipe. Nucleate boiling or transition boiling is sustainable only at low superheat levels, so the 

vast majority of time is spent in either single-phase vapor convection or film boiling. This is 

supported by flow visualization of the NASA GRC LH2 tests, which do not show liquid droplets 

in the flow until the pipe is nearly chilled down to the liquid temperature (Hartwig and Styborski). 

Chi and Vetere (1964) performed LH2 pipe chilldown experiments and reported that at a location 

roughly one foot downstream of the inlet the vapor and mist flow persisted for the major portion 

of the time to cool the downstream portion of the pipe to the liquid temperature.  

 

Another reason that the Dittus-Boelter correlation was successful is that the convection heat 

transfer rates between the liquid and vapor phases are very similar for LH2 because of the similarity 
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in the vapor and liquid properties, whereas the difference in properties for other cryogenic fluids 

like nitrogen, oxygen, and methane is quite large. Single phase heat transfer coefficients (HTCs) 

using the Dittus-Boelter correlation, normalized by the max value, are calculated for cryogenic 

fluids in Figure 1 for different values of the fluid temperature. For each fluid, there is a 

discontinuity in the HTC at the saturation temperature. At temperatures below this value, the fluid 

is a liquid and the HTC is calculated with liquid properties. Above this temperature, the fluid is a 

vapor and the HTC is calculated with vapor properties. For example, the figure shows that the 

HTC decreases from the maximum value at a liquid temperature of 80 K to about 50% of the 

maximum value at a vapor temperature of 81 K. For hydrogen and helium, the single-phase liquid 

HTC is smaller than the single-phase gas HTC. For nitrogen, oxygen, and methane, the HTC is 

larger for liquid than gas. Rearranging the Dittus-Boelter correlation below reveals the effect of 

each fluid property on the single-phase HTC. The specific heat of LH2 and liquid helium is smaller 

than their corresponding vapor specific heats. Whereas, for nitrogen, oxygen, and methane the 

specific heat is much larger for the liquid than the vapor. Additionally, the ratio of k0.6/µ0.4 is 

smaller for LH2 and liquid helium than the corresponding vapors. The reverse is true for nitrogen, 

oxygen, and methane.  

 

ℎ = 0.023𝑅𝑒0.8 𝑃𝑟0.4  (
𝑘

𝐷
) = 0.023 (

𝐺𝐷

𝜇
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𝑘
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𝑐𝑝
0.4𝑘0.6

𝜇0.4
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The significance of this trend is that, for hydrogen and helium, there is probably a small difference 

between the heat transfer of liquid to the wall and that of vapor to the wall. This explains why the 

heat transfer during transition boiling and nucleate boiling, which each contain some amount of 

liquid-to-wall convection heat transfer, are not that different than the heat transfer during film 

boiling for the LH2 chilldown data. As for nitrogen, oxygen, and methane, the data shows a large 

increase in heat transfer from film boiling to transition and nucleate boiling, which is consistent 

with the change in the single-phase HTC value from gas to liquid.  

 

Despite its partial success, the GFSSP results with the single-phase Dittus-Boelter correlation 

overestimated the heat transfer rate and predicted a more rapid chilldown of the pipe wall 

temperature in all cases, especially at locations far from the pipe inlet. The main reason is that the 

model in Leclair et al. (2018) does not include the effect of thermal nonequilibrium. Thermal 

nonequilibrium during flow film boiling occurs when the wall-to-vapor heat transfer exceeds the 

vapor-to-liquid heat transfer. This causes the vapor to heat to temperatures above the liquid 

temperature, so that the flow consists of liquid droplets entrained in a warmer vapor flow. Thermal 

nonequilibrium tends to become significant for flows at medium to high quality in which the 

volume fraction of vapor is higher than that of the liquid. If thermal equilibrium is assumed, a 

dispersed flow film boiling correlation generally overpredicts the heat transfer. This is because the 

temperature difference driving the heat transfer is larger if the saturation temperature is used 

instead of the actual vapor temperature, i.e. (Tw - Tv) < (Tw - Tsat). The level of nonequilibrium can 
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be visualized with a plot of the actual quality, xa, against the equilibrium quality, xe. It has been 

shown for LN2 pipe flow film boiling that the actual quality can be less than one at equilibrium 

qualities up to 3, as shown in Figure 2 (Forslund and Rohsenow 1968). The same trend is shown 

in Groeneveld and Delorme (1976) and Shah and Siddiqui (2000).  Chi (1967) measured the stream 

temperature in LH2 pipe chilldown experiments and reported vapor temperatures significantly 

higher than the saturation temperature during film boiling. The film boiling efficiency, defined as 

the ratio of the liquid-to-vapor heat flux to the wall-to-vapor heat flux, was reported to be as low 

as 8% for these experiments. The film boiling efficiency was found to increase for increasing 

actual quality. Therefore, it is expected that the level of nonequilibrium increases as the flow 

progresses farther from the quenching front. 

 

 
Figure 1. Normalized HTCs, using the Dittus-Boelter single-phase correlation. Liquid properties are used for 

fluid temperatures below the saturation temperature. Vapor properties are used for fluid temperatures above 

the saturation temperature. G = 50kg/m2-s, P = 150kPa, and D = 0.0127 m (1/2in). 
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Figure 2. xa vs. , xe for LN2 chilldown, reprinted from Forslund and Rohsenow (1968). 

 

The purpose of current work is to develop a set of LH2-only correlations that correctly accounts 

for the effects of thermal nonequilibrium. The correlation set is fit to the LH2 pipe chilldown 

experimental data by using a lumped-node heat transfer model to simulate the chilldown of the 

entire pipe from the inlet to the second wall temperature measurement location. A review of the 

data, correlations, fitting method, and the comparison of the model to the data is presented 

below. 

2 Experiment Overview 

2.1 Experiment Description 

Recently, a set of liquid hydrogen transfer line chilldown tests were conducted at the NASA Glenn 

Research Center. Only a brief description is given here; for a detailed description, the reader is 

referred to Hartwig et al. (2019). Tests were conducted over a range of mass flow rates (0.0023 – 

0.036 kg/s) and liquid saturation temperatures (20.3 K, 21.4 K, 22.9 K, and 24.2 K). Liquid 

hydrogen was conditioned inside a storage dewar and flow was routed directly to a Coreolis flow 

meter to measure liquid flow. The tank and line chill assembly rested inside a vacuum chamber 

(VC) with a thermally controlled cryoshroud that was set to 1.33x10-7 Pa and 250K. Fluid was 

routed vertically upward through a flow control manifold. Orifices were used to control lower and 

medium flow rates, while the pipe diameter and driving pressure gradient set the higher flow rate 

limit. Flow was then sent either through a sight glass used to visualize flow as the test evolved, or 

through a leg that contained a pump mass simulator at the end of the leg. Test results reported here 

are from the pump leg. Then out of the top of the VC lid. Silicon diodes were used to measure wall 

mounted temperatures along the transfer line as well as internal stream temperature. Pressure 

transducers were used to measure inlet and exit pressure. The outer diameter of the transfer line 

was 1.27 cm (0.5 in) and the inner diameter was 1.02 cm (0.402 in). 
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2.2 Correlation Development Challenges 

A plot of the upstream temperature and wall-to-fluid heat flux vs. time for one of the test runs is 

given in Figure 3a. The boiling curve (the HTC h = q”/(Tw – Tsat) instead of the heat flux on the y-

axis) for the upstream and downstream locations is shown for the same test, with the mass flux 

measurement overlaid for reference. For the first 28s, the heat flux is increasing in time. The flow 

is single-phase vapor at this point, and the increase in heat flux is due to the decrease in the vapor 

temperature. The local vapor temperature is decreasing in time as more of the pipe is chilled down 

upstream of the temperature station and less total heat is input into the flow before the flow reaches 

the temperature station. After 28s, the heat flux begins to decrease. Chi (1967) suggested this 

transition point as the beginning of film boiling. However, from Figure 1 it is evident that the HTC 

decreases with vapor temperature. Therefore, the 28s mark could indicate the point at which the 

decrease in the local HTC outweighs the increase in the wall-fluid temperature difference. So this 

peak heat flux at 28s does not necessarily signify the presence of liquid in the flow. 

 

Another dividing point in the heat flux curve is at 46s. At this point, there is a rise in the heat flux, 

and the heat flux becomes noisier. At first glance of Figure 3b at this location, when referencing a 

typical boiling curve, this appears to signify the Leidenfrost temperature and the incipience of 

transition boiling. However, the wall temperature of 120 K is much higher than the theoretical 

superheat limit of hydrogen, estimated to be 28 K (see Darr et al. 2019b for equation). Thus, it is 

unlikely that transition boiling, which is a mixture of nucleate boiling and film boiling, can occur 

at this high of a surface temperature. As an example, only modest increases in the Leidenfrost 

point of 5 K to 30 K above the theoretical superheat limit of nitrogen have been recorded for pipe 

chilldown (Darr et al. 2019b). Another candidate for this transition point is the introduction of 

relatively large liquid slugs in the flow. LH2 chilldown data from Chi (1967) showed measured 

stream temperatures sporadically dropping from warm vapor temperatures to the liquid 

temperature only after the wall temperature fell below 125 K. These transitory spikes to the liquid 

temperature were indicative of liquid slugs entering the flow. This did not necessarily indicate 

transition boiling, but instead indicated something like a temporary inverted annular flow (IAF) 

pattern. More support for this interpretation is provided by the flow visualization data from the 

NASA GRC LH2 chilldown tests. These videos showed single-phase gas flow until the sight-glass 

wall temperature reached 115 K, in which mist flow was observed. Then, at a wall temperature of 

70 K the first slug flow patterns were observed. Liquid contact with the wall, which is required for 

nucleate boiling, was not observed until the wall temperature reached 40 K. Based on this 

information, it is most likely the case that the single-phase vapor convection occured for the first 

28s, from 28s to 46s the flow was either single-phase vapor or mist flow, from 46s to 59s the heat 

transfer was enhanced by slug flow, and at around 59s the liquid began to contact the wall. 
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A)  B)  

Figure 3. LH2 pipe chilldown test data at low mass flux. A) Temperature and heat flux at the upstream 

location as a function of time. B) HTCs for the upstream and downstream location and mass flux as a 

function of wall temperature.  

For comparison, Figure 4 shows the same plots for a test at a higher mass flux. At this higher mass 

flux, the pipe cools down to the liquid temperature at a much faster rate. The data sampling rate is 

too small to detect minor changes in the heat flux. Yet, the same trend in the boiling curve as in 

Figure 3b appears in Figure 4b. 

  

Figure 4. LH2 pipe chilldown test data at high mass flux. A) Temperature and heat flux at the upstream 

location as a function of time. B) HTCs for the upstream and downstream location and mass flux as a 

function of wall temperature. 

Another major challenge in developing correlations with the current LH2 chilldown data is that 

the fluid stream temperature is unknown along the distance of the tube. The fluid temperature 

during chilldown for most of the test is superheated well above the saturation temperature, but 

there are no fluid temperature measurements at the local wall temperature locations. The wall 

temperature data is taken at locations relatively far downstream at 14.5 and 50 inches from the 
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inlet, where almost all data is for either single-phase vapor convection or mist flow with high 

amounts of thermal nonequilibrium. This is in contrast with the LN2 data from Darr et al. 

(2016b) which obtained measurements at shorter distances (5 and 15 inches), which, combined 

with the higher mass fluxes tested and the fact that more energy is required to boil off the LN2, 

resulted in vapor temperatures much closer to the saturation temperature. 

One consequence of unknown fluid temperatures is that the NASA LH2 chilldown data cannot be 

used in a direct way to develop a correlation at the locations near the inlet or the quenching front. 

At these locations, the vapor mass fraction is small and the wall superheat, Tw – Tv, is large. This 

is unlike the case at the locations of the wall temperature measurements downstream where the 

vapor mass fraction is large and the wall superheat is small. Applying the dispersed flow film 

boiling or single-phase vapor correlation that was developed from the data to the upstream 

locations causes an error in the prediction. A separate correlation, one developed for slug flow or 

IAF, is needed for the locations near the inlet. This type of correlation is presented later in the 

paper. 

Another consequence for the LH2 chilldown data is that the quality of the flow at the local wall 

temperature measurements is not easily estimated. The equilibrium quality extrapolation method 

that was used for LN2 data was sufficient in that case because wall temperature measurements 

were taken close to the inlet where the flow regime was IAF. There is no knowledge of the how 

the heat flux varies near the inlet for the LH2 chilldown data. 

Because of the difficulties mentioned above in determining the flow regime, the fluid temperature, 

and the equilibrium quality, a different approach is needed to develop the new heat transfer 

correlation set from the LH2 chilldown data. This approach, which involves performing a 

simulation with a numerical model of the heat transfer along the tube, is discussed in the next 

section. 

3 Pipe Chilldown Model 

3.1 Approach to fitting correlations 

To address the problems mentioned in section 2.2, the following approach was taken to fit the 

heat transfer correlations. A lumped-node heat transfer model was used to simulate the chilldown 

of the entire pipe from the inlet to the second wall temperature measurement location. A set of 

correlations for the film boiling, transition boiling, nucleate boiling heat flux was used to predict 

the wall-to-fluid heat transfer. Correlations for the Leidenfrost temperature and critical heat flux 

were used to determine dividing points between the boiling regimes. A correlation was employed 

to estimate the thermal nonequilibrium of the flow. Different historical correlations in the 

literature were attempted to determine the best functional form that fit the data. The resulting 

transient wall temperature predicted by the model was compared to the LH2 chilldown data at the 

corresponding measurement locations. A generic numerical optimization technique was used to 

fit the constants of the correlations to minimize the error against the data. 
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3.2 Heat transfer correlations 

3.2.1 Film boiling and single-phase vapor 

The film boiling and single-phase vapor heat transfer correlations are the main thrust of this 

paper because the majority of time for LH2 chilldown is spent in these regimes. Pipe flow film 

boiling correlations have historically been divided into two regimes: IAF film boiling and 

dispersed flow film boiling. IAF generally occurs immediately downstream of the quenching 

front, where the quality of the flow is close to zero. A liquid core passes through the center of the 

pipe and a vapor annulus surrounds this liquid core, separating it from the wall. Liquid 

evaporates from the core surface as the flow progresses down the pipe, thinning the diameter of 

the liquid core. As the core thins, it breaks into slugs of liquid that can be separated by vapor 

gaps. Continuing downstream, the slugs decrease in size until the flow consists of droplets 

entrained in a vapor flow. This regime is dispersed flow film boiling. 

In IAF, the heat transfer is generally larger when the vapor annulus is thinner. A thinner vapor 

annulus has the effect of increasing the vapor temperature gradient at the wall. This drives the 

trend that IAF film boiling heat transfer is larger for smaller qualities. In dispersed flow, the 

opposite is true. As the liquid droplets reduce in size and quantity, the speed of the vapor 

increases for the same given mass flux. This produces higher convection heat transfer at the wall. 

However, in some cases, especially at high mass fluxes, it has been shown that droplets can 

influence the heat transfer during dispersed flow film boiling. This effect will be ignored in this 

paper since the mass fluxes for the LH2 chilldown data are relatively small. Above some quality 

in dispersed flow film boiling, thermal nonequilibrium will begin to degrade the heat transfer. 

The vapor warms at a faster rate than it would in nonequilibrium, and this lowers the wall 

superheat that drives the heat transfer. Additionally, there is more liquid present in 

nonequilbrium than in equilibrium, which lowers the vapor velocity. 

The difference in the flow patterns of IAF and dispersed flow make it difficult to develop a 

single correlation that accurately predicts the heat transfer in both regimes. Therefore, the 

approach in this paper is to develop a separate correlation for each regime and join them together 

by the p-norm method to provide a single film boiling correlation. 

The dispersed flow film boiling correlation is similar to those developed by Rohsenow (1988) 

and Groeneveld and Delorme (1976). The advantage of this correlation is it has successfully 

predicted the thermal nonequilibrium for multiple fluids, including LN2. The correlation, which 

is dominant at medium to high qualities, takes the following form: 

𝑁𝑢𝐷𝐹 = 𝑐1𝑅𝑒𝑡𝑝
𝑐2𝑃𝑟𝑣,𝑓

𝑐3  (3) 

In the equation above, the droplet heat transfer enhancement term that is present in the 

Rohsenow correlation is neglected. The two-phase vapor Reynolds number is defined as: 

𝑅𝑒𝑡𝑝 =
𝐺𝑥𝑎𝐷

𝜇𝑣,𝑓𝛼
 (4) 
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The void fraction, α, assumes the slip ratio is equal to 1. 

𝛼 = [1 +
𝜌𝑣

𝜌𝑙,𝑠𝑎𝑡
(

1 − 𝑥𝑎

𝑥𝑎
)]

−1

 (5) 

The vapor density is taken at the bulk vapor temperature and local pressure. 

The form of the film boiling convection term in the correlation in Darr et al. (2016b) and Darr et 

al. (2019a) is used to represent the heat transfer during IAF and slug flow, which is dominant at 

low qualities:  

𝑁𝑢𝐼𝐴𝐹 = 𝑐4

𝐷

𝑘𝑣,𝑠𝑎𝑡
[
𝜌𝑣,𝑠𝑎𝑡(𝜌𝑙,𝑠𝑎𝑡 − 𝜌𝑣,𝑠𝑎𝑡)𝑔ℎ𝑓𝑔𝑘𝑣,𝑠𝑎𝑡

3

𝐿𝜇𝑣(𝑇𝑤 − 𝑇𝑠𝑎𝑡)
]

1/4

+  𝑐5(1 − 𝑥𝑎)𝑐6𝑅𝑒𝑣
𝑐7𝑃𝑟𝑣

𝑐8 (6) 

This correlation was developed originally from LN2 data at qualities in the range of −0.13 to 0.4, 

with a majority of the data at qualities near zero or negative. In this regime, the relationship 

between the convection heat transfer and the quality is different than it is for high qualities. This 

difference is owed to the flow patterns at low and high qualities. At low qualities, the higher 

volume of liquid present in the flow forms an IAF pattern, in which a liquid core is surrounded 

by a vapor annulus that is contacting the wall. At high qualities, the liquid is in the form of small 

liquid droplets that are entrained in the vapor flow. In the low-quality regime, decreasing the 

quality further causes the vapor annulus to decrease, effectively decreasing the thermal boundary 

layer at the wall. In the high-quality regime, as the quality is increased, the heat transfer will also 

increase due to the increase in the vapor velocity. The liquid droplets have little influence over 

the heat transfer at the wall, and at higher qualities, the speed of the vapor is increased for a 

given mass flux. The higher vapor speed generates higher convection heat transfer at the wall. 

This relationship is captured in Figure 5, which plots the heat flux for the low- and high-quality 

regimes, as well as the combined value, against the equilibrium quality for example hydrogen 

chilldown conditions. The value of c6 in Eq. (6) is some positive number so that the Nu number 

increases as quality decreases. 
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Figure 5. Breakdown of the heat fluxes, including the high quality, i.e. dispersed flow, heat flux (q-DF) and 

the low quality, i.e. inverted annular flow, heat flux (q-IAF). The calculation uses an example hydrogen 

chilldown scenario with a mass flux of 20 kg/m2-s, pressure of 200 kPa, wall temperature of 250 K. 

Lastly, a correlation is required to predict the actual quality, which determines the extent of 

thermal nonequilibrium. Historically, correlations for actual quality were developed for heated 

tube and assume a constant wall heat flux across the entire tube length (Rohsenow 1988, 

Groeneveld and Delorme 1976). In these correlations, the actual quality is a function of the 

applied heat flux. This method of correlation is unsuitable for quenching, in which the heat flux 

is unknown and is part of the solution. Shah and Siddiqui (2000) provide a correlation for actual 

quality as a function of equilibrium quality and Froude number. A similar approach will be taken 

in this paper. However, the Reynolds number will be used instead of the gravity-dependent 

Froude number so that the correlation can be extended to different flow directions and a zero 

gravity environment. The explicit equation below is used to find the actual quality: 

𝑥𝑎 = (
1

𝑥𝑒
𝐾

+ 1)
−1/𝐾

 (7) 

This follows a similar trend found in the LN2 data by Forslund and Rohsenow (1968), as 

indicated by Figure 6. The value of K is a function of the liquid Re number, and should be higher 

for larger Rel. A linear relationship between K and Rel was determined to be sufficient. 

𝐾 = 𝑐9𝑅𝑒𝑙 + 𝑐10 (8) 

The bulk vapor temperature corresponding to the actual quality can then be found from: 

𝑇𝑣 = (
𝑥𝑒 − 𝑥𝑎

𝑥𝑎
)

ℎ𝑓𝑔

𝑐𝑝,𝑣
+ 𝑇𝑠𝑎𝑡 (9) 
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The vapor specific heat, cp,v, does not change significantly with temperature for LH2, so the value 

is taken at the saturated vapor condition corresponding to the local pressure. This helps to avoid 

having to iteratively solve the equation for the vapor temperature. 

 
Figure 6. Actual quality vs. equilibrium quality. Two separate curves of Eq. (8) are shown, one to represent a 

high mass flux case (K = 2) and the other to represent a low mass flux case (K = 0.75).  

The p-norm is applied to the low- and high-quality Nu numbers to obtain a single value for the 

correlation. The value of p, which determines how the Nu number transitions from one region to 

the other, is an additional parameter to fit to the data. 

𝑁𝑢𝐹𝐵 = (𝑁𝑢𝐼𝐴𝐹
𝑝 + 𝑁𝑢𝐷𝐹

𝑝 )
1/𝑝 

 (10) 

There are quality-dependent conditions on the Nusselt numbers. If xe < 0, then NuDF is set to 0. If 

xe > 1, then NuIAF is set to 0. Also, if xa > 0.99, then xa is set equal to 1, and the heat transfer 

mechanism is single-phase vapor convection. This last condition must be implemented because 

with the proposed correlation for xa, the value of xa will never reach one, no matter how large xe 

becomes. 

The HTC and heat flux are calculated from the Nu number by the following: 

𝑞𝐹𝐵
′′

𝑇𝑤 − 𝑇𝑣
= ℎ𝐹𝐵 =

𝑘𝑣,𝑠𝑎𝑡

𝐷
𝑁𝑢𝐹𝐵 (11) 

The coefficients c1 – c10 and p are fit to the data using the method discussed in the previous 

section. 

In the event that the xa > 0.99, the correlation automatically simplifies to a single-phase vapor 

correlation automatically. 
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𝑁𝑢𝑆𝑃 = 𝑁𝑢𝐹𝐵(𝑥𝑎 = 1) = 𝑐1 (
𝐺𝐷

𝜇𝑣,𝑓
)

𝑐2

𝑃𝑟𝑣,𝑓
𝑐3  (12) 

This approach ensures that the heat flux transitions smoothly from the film boiling regime to the 

single-phase vapor regime, and vice versa. 

3.2.2 Nucleate boiling 

As addressed in Hartwig et al. (2016), most nucleate boiling correlations are developed for heated 

tube data and use some form of the boiling number in the correlation. This approach is unsuitable 

for a quenching application, since the heat flux is an unknown value. Darr et al. (2016b) presented 

a nucleate boiling correlation for LN2 data in the following form for upward flow: 

ℎ𝑁𝐵 = 61.6𝑅𝑒𝑙
−.332𝐽𝑎𝑙

−.254ℎ𝐷𝐵  (13) 

The Dittuse-Boelter correlation for liquid flow is expressed as: 

ℎ𝐷𝐵 = 0.023𝑅𝑒𝑙
0.8𝑃𝑟𝑙

0.4 (
𝑘𝑙

𝐷
)  (14) 

The Jakob number is: 

𝐽𝑎𝑙 =
𝑐𝑝𝑙(𝑇𝑤 − 𝑇𝑠𝑎𝑡)

ℎ𝑓𝑔
  (15) 

The heat flux is then found from: 

𝑞𝑁𝐵
′′ = ℎ𝑁𝐵(𝑇𝑤 − 𝑇𝑠𝑎𝑡)  (16) 

This correlation gives values ranging from 5 to 10 kW/m2 for the LH2 chilldown dataset at the 

maximum expected DNB temperature of 2K. This compares well with carefully controlled 

heated tube experiments in Shirai et al. (2011). 

 

3.2.3 Transition boiling 

Transition boiling is a mixture of film boiling and nucleate boiling. When the wall temperature is 

above the DNB temperature but below the Leidenfrost temperature, the flow is in the transition 

boiling regime. The range of wall temperatures that the flow is in transition boiling is small, so the 

time spent during transition boiling is brief for pipe childown. It is difficult to determine from the 

data the exact transition boiling heat flux due to aliasing of the data. Therefore, a simple linear fit 

from 𝑞𝑁𝐵
′′ (𝑇𝐷𝑁𝐵) to 𝑞𝐹𝐵

′′ (𝑇𝑊𝑒𝑡) is used to find the transition boiling at a given wall temperature. 

𝑞𝑇𝐵
′′ (𝑇𝑤) = [𝑞𝑁𝐵

′′ (𝑇𝐷𝑁𝐵) − 𝑞𝐹𝐵
′′ (𝑇𝑤𝑒𝑡)] (

𝑇𝑤 − 𝑇𝑤𝑒𝑡

𝑇𝐷𝑁𝐵 − 𝑇𝑤𝑒𝑡
) + 𝑞𝐹𝐵

′′ (𝑇𝑤𝑒𝑡)  (17) 
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3.2.4 Leidenfrost temperature 

The exact Leidenfrost temperature is difficult to determine from the LH2 chilldown data, as 

mentioned earlier. The correlation for the Leidenfrost temperature is taken from Darr et al. 

(2019b), ignoring the effects of the transient solid surface temperature and the surface energies 

which are minor for stainless steel and hydrogen. This correlation was fit to LN2 data but gives 

reasonable values of 31 K to 33 K for hydrogen depending on the mass flux and the local pressure.  

𝑇𝑤𝑒𝑡 = 0.844𝑇𝑐𝑟(1 + 0.060𝑊𝑒𝐷
0.208) (18) 

3.2.5 Temperature at the departure from nucleate boiling 

The departure from nucleate boiling (DNB) temperature and heat flux were measured by Shirai et 

al. (2011) for LH2 during heated tube experiments for a relatively high pressure of 700 kPa. The 

value of the DNB temperature was heavily dependent on the liquid subcooling at the inlet and the 

mass flux. For saturated liquid at the inlet, the DNB temperature was approximately 2 K above the 

saturated temperature for a cross-section averaged liquid velocity of 1.33 m/s. This was the lowest 

mass flux tested in the experiment. The liquid velocity for the current LH2 chilldown experiment 

ranged from approximately 0.2 to 0.8 m/s. Therefore, the maximum expected DNB temperature is 

expected to be 2 K above Tsat. Above this temperature the flow is in transition boiling. 

𝑇𝐷𝑁𝐵 − 𝑇𝑠𝑎𝑡 = 2 (19) 

3.3 Model Description 

The numerical model that was used to simulate the pipe chilldown was presented in Darr et al. 

(2015). Details are given in that paper, and a brief description is given here. The test section was 

divided into evenly-spaced, lumped-parameter nodes and the finite volume technique was used to 

solve the transient energy equation in the axial direction of the solid pipe. It was assumed that the 

temperature gradients in the radial and azimuthal directions were negligible in comparison to the 

gradients in the axial direction. This assumption is appropriate for thin tubes like the one used for 

the LH2 chilldown tests where axial conduction is only relevant at the quenching front (Kawanami 

et al. 2007). The heat flux correlations were applied to the inner surface of each node depending 

on the local fluid conditions at the given node. The continuity and momentum equations for the 

fluid were not solved. Instead, the transient measured mass flux was used for each node at each 

timestep. It was assumed that the mass flux at the flow meter was equal to the mass flux over the 

entire pipe. There is some error with this method, but it is small as has been shown with simulations 

using commercial lumped-node solvers. Linear interpolation of the transient pressure 

measurements at the inlet and exit of the test section was used to estimate the local pressure at each 

node and timestep. This approach of using the measured mass flux and pressure measurements 

was chosen to provide the most accurate fluid conditions to the model, and avoid the error 

introduced by solving the fluid continuity and momentum equations. In this way, this would keep 

the main focus on the evaluation of the heat transfer correlations. The energy equation had to be 

solved for the fluid next to each solid node at each timestep to determine the fluid temperature and 

equilibrium quality to be used in the correlations for each node. This method is discussed in more 

detail in Darr et al. (2015). 
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Radiation and gas conduction from the surroundings outside the test section tube made up the 

parasitic heat and were estimated for the simulation. A central difference scheme was used for the 

second-order spatial derivative and the first-order, fully-implicit time integration method was used. 

A tridiagonal matrix solver was used to solve the equations set at each timstep. A convergence 

study was performed on both the number of nodes and the timestep.  40 nodes and a timestep of 

0.01s were found to be sufficient. 

 

The logic to determine what correlation to use – either single-phase vapor, film boiling, transition 

boiling, or nucleate boiling – for the local fluid and wall conditions went as follows: 

 

 Calculate Twet for the mass flow rate and local pressure at the node 

 If Tw > Twet then calculate xa from the thermal nonequilibrium correlation 

 If xa < 0.99, 𝑞′′ = 𝑞𝐹𝐵
′′  

 If xa ≥ 0.99, set xa = 1, 𝑞′′  =  𝑞𝑆𝑃
′′  =  𝑞𝐹𝐵

′′ (𝑥𝑎  =  1) 

 If Tw ≤ Twet, then: 

 If Tw > TDNB, 𝑞′′ = 𝑞𝑇𝐵
′′  

 If Twet ≤ TDNB, 𝑞′′ = 𝑞𝑁𝐵
′′  

 

4 Results 

4.1 Finalized correlation set 

The correlation set is presented in Table 1 with the finalized constants c1-c10 and p. 
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Table 1. Correlation set with final coefficients. 

Parameter Correlation 

𝑥𝑎 
𝑥𝑎 = (

1

𝑥𝑒
𝐾

+ 1)
−1/𝐾

 

𝐾 = 5.26 × 10−5𝑅𝑒𝑙,𝑖𝑛 + 0.11 

𝑞𝑓𝑏
′′  

𝑞𝐹𝐵
′′ = 𝑁𝑢𝐹𝐵𝑘𝑣,𝑠𝑎𝑡(𝑇𝑤 − 𝑇𝑣)/𝐷 

𝑁𝑢𝐹𝐵 = (𝑁𝑢𝐼𝐴𝐹
3/4

+ 𝑁𝑢𝐷𝐹
3/4

)
4/3 

 

𝑁𝑢𝐷𝐹 = 0.015𝑅𝑒𝑡𝑝
0.8774𝑃𝑟𝑣,𝑓

0.6112 

𝑁𝑢𝐼𝐴𝐹 = 0.06 [
𝜌𝑣,𝑠𝑎𝑡(𝜌𝑙,𝑠𝑎𝑡 − 𝜌𝑣,𝑠𝑎𝑡)𝑔ℎ𝑓𝑔𝑘𝑣,𝑠𝑎𝑡

3

𝐿𝜇𝑔(𝑇𝑤 − 𝑇𝑠𝑎𝑡)
]

1/4

+  0.015(1 − 𝑥𝑎)4𝑅𝑒𝑣
0.8𝑃𝑟𝑣,𝑠𝑎𝑡

0.8  

 

𝑞𝑁𝐵
′′  

𝑞𝑁𝐵
′′ = ℎ𝑁𝐵(𝑇𝑤 − 𝑇𝑠𝑎𝑡) 

ℎ𝑁𝐵 = 61.6𝑅𝑒𝑙
−.332𝐽𝑎𝑙

−.254ℎ𝐷𝐵  

ℎ𝐷𝐵 = 0.023𝑅𝑒𝑙
0.8𝑃𝑟𝑙

0.4 (
𝑘𝑙

𝐷
) 

𝑞𝑇𝐵
′′  𝑞𝑇𝐵

′′ (𝑇𝑤) = [𝑞𝑁𝐵
′′ (𝑇𝐷𝑁𝐵) − 𝑞𝐹𝐵

′′ (𝑇𝑤𝑒𝑡)] (
𝑇𝑤 − 𝑇𝑤𝑒𝑡

𝑇𝐷𝑁𝐵 − 𝑇𝑤𝑒𝑡
) + 𝑞𝐹𝐵

′′ (𝑇𝑊𝑒𝑡) 

𝑇𝑤𝑒𝑡 𝑇𝑤𝑒𝑡 = 0.844𝑇𝑐𝑟(1 + 0.060𝑊𝑒𝐷
0.208) 

𝑇𝐷𝑁𝐵 𝑇𝐷𝑁𝐵 = 2𝐾 

 

4.2 Comparison with data 

The model wall temperature prediction is compared to the test data for three tests which represent 

low (Figure 7A and B), medium (Figure 7C and D), and high flow rate (Figure 7E and F) tests for 

the pump simulator leg. The average mass flux, Gavg, for each test was 21, 38, and 81 kg/m2-s, 

respectively. For each test, the chilldown curve (Tw vs. time) and the boiling curve (𝑞𝑤
′′   vs. Tw) of 

the model is compared to the data. The model has better overall agreement at higher mass fluxes. 

At lower mass fluxes, it tends to over-predict the heat flux near the beginning of chilldown. 

Analysis of the data suggests that the amount of nonequilibrium is underestimated by the 

correlation for actual quality. Attempts were made to improve this prediction at low mass fluxes 

but were unsuccessful. 
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A) B) 

C) D)

E) F)  
Figure 7. Comparison of the model vs. the data. On the left side are the chilldown curves, on the right side are 

the corresponding boiling curves. A) and B) are the chilldown and boiling curves, respectively, for the low 

mass flux test, Gavg = 21 kg/m2-s. C) and D) are the chilldown and boiling curves, respectively, for the medium 

mass flux test, Gavg = 38 kg/m2-s. E) and F) are the chilldown and boiling curves, respectively, for the high 

mass flux test,  Gavg = 81 kg/m2-s. 

 

The mean absolute error (MAE) was calculated for the wall temperature at the two temperature 

measurement locations for ten of the twelve LH2 chilldown tests on the pump leg, a total of 506 

data points, where MAE is defined as 
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MAE =
1

𝑁
∑ |data(𝑡𝑖) − model(𝑡𝑖)|

𝑁

𝑖=1
 (20) 

 

where N is the number of data points, and ti is the time corresponding to each data point. The MAE 

averaged over all tests for both locations, was found to be 19.5 K. Two of the tests were left out 

because the pipe began at a non-uniform temperature initial condition. These results are a 40% 

improvement over the results from Leclair et al. (2018), which obtained a MAE value of 32.7 K 

when averaged for both temperature locations over all tests that were simulated in that paper using 

GFSSP with the correlation set from Darr et al. (2019a). 

 

5 Conclusion 

A new correlation set, implemented in a numerical heat transfer model, was able to predict the 

transient wall heat flux and wall temperature with improved accuracy over existing correlations 

for the chilldown of a vertical pipe with LH2 flowing upward. These results support the validity of 

the correlation for the actual quality (i.e. nonequilibrium), the heat transfer correlations for all three 

of the boiling regimes, the correlations for the dividing points of the boiling regimes (the 

Leidenfrost temperature, and the DNB temperature), as well as the logic employed when choosing 

which correlation to use under local conditions. These correlations can be used to improve the 

accuracy of commercial software packages when simulating LH2 transfer line chilldown. 
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