2,636 research outputs found

    Evidence of Titan's Climate History from Evaporite Distribution

    Full text link
    Water-ice-poor, 5-μ\mum-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μ\mum-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μ\mum-bright material covers 1\% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μ\mum-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μ\mum-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite

    An Exploration of Systematic Errors in Transiting Planets and Their Host Stars

    Full text link
    Transiting planet systems offer the best opportunity to measure the masses and radii of a large sample of planets and their host stars. However, relative photometry and radial velocity measurements alone only constrain the density of the host star. Thus, there is a one-parameter degeneracy in the mass and radius of the host star, and by extension the planet. Several theoretical, semi-empirical, and nearly empirical methods have been used to break this degeneracy and independently measure the mass and radius of the host star and planets(s). As we approach an era of few percent precisions on some of these properties, it is critical to assess whether these different methods are providing accuracies that are of the same order, or better than, the stated statistical precisions. We investigate the differences in the planet parameter estimates inferred when using the Torres empirical relations, YY isochrones, MIST isochrones, and a nearly-direct empirical measurement of the radius of the host star using its spectral energy distribution, effective temperature, and \textit{Gaia} parallax. We focus our analysis on modelling KELT-15b, a fairly typical hot Jupiter, using each of these methods. We globally model TESS photometry, optical-to-NIR flux densities of the host star, and \textit{Gaia} parallaxes, in conjunction with extant KELT ground-based follow-up photometric and radial velocity measurements. We find systematic differences in several of the inferred parameters of the KELT-15 system when using different methods, including a 6%\sim 6\% (2σ\sim 2\sigma) difference in the inferred stellar and planetary radii between the MIST isochrones and SED fitting.Comment: 12 Figures, 20 Tables, Submitted to Ap

    An assessment of pediatric residency applicant perceptions of Fit during the virtual interview era

    Get PDF
    PURPOSE: Residency recruitment events and interviews are widely considered an integral component of the residency match experience. Due to the COVID-19 pandemic, residency recruitment and interviewing throughout the 2020-2021 academic year were performed virtually, which created challenges for applicants\u27 ability to discern fit to a program. Given this change, it is reasonable to suspect that applicants would be less able to discern program fit. Therefore, this study evaluated how virtual interviews impacted pediatric residency applicants\u27 ability to assess factors contributing to fit and subsequently how applicants assessed their self-perceived fit to their top-ranked programs. METHODS: An online, anonymous survey was distributed to all residency applicants who applied to any specialty at our large academic institution. The survey utilized a 5-point Likert-type scale to evaluate qualities of fit as well as the applicants\u27 self-perceived ability to assess these qualities through a virtual platform. RESULTS: 1,840 surveys were distributed, of which 473 residency applicants responded (25.7% response rate). Among these responses, 81 were pediatric applicants (27.6%). Factors deemed most important in determining fit included how well the residents get along with one another (98.8%), how much the program appeared to care about its trainees (97.5%), and how satisfied residents were with their program (97.5%). Qualities deemed most difficult for applicants to discern included the quality of facilities (18.6%), patient diversity (29.4%), and how well the residents got along with one another (30.2%). When compared to all other residency applicants, pediatric applicants placed more value on whether a program was family-friendly (p = 0.015), the quality of the facilities (p = 0.009), and the on-call system (p = 0.038). CONCLUSION: This study highlights factors that influence pediatric applicants\u27 perception of fit into a program. Unfortunately, many factors deemed most important for pediatric applicants were also among the most difficult to assess virtually. These include resident camaraderie, whether a program cares about its residents, and overall resident satisfaction. Taken together, these findings and the recommendations presented should be considered by all residency program leaders to ensure the successful recruitment of a pediatric residency class

    Classification of time series by shapelet transformation

    Get PDF
    Time-series classification (TSC) problems present a specific challenge for classification algorithms: how to measure similarity between series. A \emph{shapelet} is a time-series subsequence that allows for TSC based on local, phase-independent similarity in shape. Shapelet-based classification uses the similarity between a shapelet and a series as a discriminatory feature. One benefit of the shapelet approach is that shapelets are comprehensible, and can offer insight into the problem domain. The original shapelet-based classifier embeds the shapelet-discovery algorithm in a decision tree, and uses information gain to assess the quality of candidates, finding a new shapelet at each node of the tree through an enumerative search. Subsequent research has focused mainly on techniques to speed up the search. We examine how best to use the shapelet primitive to construct classifiers. We propose a single-scan shapelet algorithm that finds the best kk shapelets, which are used to produce a transformed dataset, where each of the kk features represent the distance between a time series and a shapelet. The primary advantages over the embedded approach are that the transformed data can be used in conjunction with any classifier, and that there is no recursive search for shapelets. We demonstrate that the transformed data, in conjunction with more complex classifiers, gives greater accuracy than the embedded shapelet tree. We also evaluate three similarity measures that produce equivalent results to information gain in less time. Finally, we show that by conducting post-transform clustering of shapelets, we can enhance the interpretability of the transformed data. We conduct our experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselve

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA\u27s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
    corecore