39 research outputs found

    A cross-scale analysis to understand and quantify the effects of photosynthetic enhancement on crop growth and yield across environments

    Get PDF
    Abstract Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac) and electron transport-limited (Aj) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research

    Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen

    Get PDF
    Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically “switched on” or “off” only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC

    Dose-related effects of alcohol on cognitive functioning

    Get PDF
    We assessed the suitability of six applied tests of cognitive functioning to provide a single marker for dose-related alcohol intoxication. Numerous studies have demonstrated that alcohol has a deleterious effect on specific areas of cognitive processing but few have compared the effects of alcohol across a wide range of different cognitive processes. Adult participants (N = 56, 32 males, 24 females aged 18–45 years) were randomized to control or alcohol treatments within a mixed design experiment involving multiple-dosages at approximately one hour intervals (attained mean blood alcohol concentrations (BACs) of 0.00, 0.048, 0.082 and 0.10%), employing a battery of six psychometric tests; the Useful Field of View test (UFOV; processing speed together with directed attention); the Self-Ordered Pointing Task (SOPT; working memory); Inspection Time (IT; speed of processing independent from motor responding); the Traveling Salesperson Problem (TSP; strategic optimization); the Sustained Attention to Response Task (SART; vigilance, response inhibition and psychomotor function); and the Trail-Making Test(TMT; cognitive flexibility and psychomotor function). Results demonstrated that impairment is not uniform across different domains of cognitive processing and that both the size of the alcohol effect and the magnitude of effect change across different dose levels are quantitatively different for different cognitive processes. Only IT met the criteria for a marker for wide-spread application: reliable dose-related decline in a basic process as a function of rising BAC level and easy to use non-invasive task properties.Mathew J. Dry, Nicholas R. Burns, Ted Nettelbeck, Aaron L. Farquharson and Jason M. Whit

    Increased Abundance of M cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    Get PDF
    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Incremental search algorithms for on-line planning

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards a novel monitor of intraoperative awareness: Selecting paradigm settings for a movement-based brain-computer interface

    Get PDF
    Contains fulltext : 103039.pdf (publisher's version ) (Open Access)During 0.1-0.2% of operations with general anesthesia, patients become aware during surgery. Unfortunately, pharmacologically paralyzed patients cannot seek attention by moving. Their attempted movements may however induce detectable EEG changes over the motor cortex. Here, methods from the area of movement-based brain-computer interfacing are proposed as a novel direction in anesthesia monitoring. Optimal settings for development of such a paradigm are studied to allow for a clinically feasible system. A classifier was trained on recorded EEG data of ten healthy non-anesthetized participants executing 3-second movement tasks. Extensive analysis was performed on this data to obtain an optimal EEG channel set and optimal features for use in a movement detection paradigm. EEG during movement could be distinguished from EEG during non-movement with very high accuracy. After a short calibration session, an average classification rate of 92% was obtained using nine EEG channels over the motor cortex, combined movement and post-movement signals, a frequency resolution of 4 Hz and a frequency range of 8-24 Hz. Using Monte Carlo simulation and a simple decision making paradigm, this translated into a probability of 99% of true positive movement detection within the first two and a half minutes after movement onset. A very low mean false positive rate of <0.01% was obtained. The current results corroborate the feasibility of detecting movement-related EEG signals, bearing in mind the clinical demands for use during surgery. Based on these results further clinical testing can be initiated.9 p

    Group level behavioral and ERP responses.

    No full text
    <p>a) Mean behavioral identification scores for native and non-native speakers for the three deviant stimuli. b) Group-level ERPs for both the standard and deviant stimuli are presented in each of the three measurement conditions for both native-English and native-Dutch participants. Responses are averaged across nine fronto-central electrode locations, indicated by the large dots in the scalp map presented above (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0068261#pone-0068261-t001" target="_blank">Table 1</a>). In addition, difference waves have been derived for each language group by subtracting the grand-average responses to the standard stimulus from that of the deviant stimulus in each of the measurement conditions. c) Area under the ROC-curve scores for spatio-temporal features across the three deviant conditions for both native and non-native participants. The relative locations of four midline electrodes are indicated for reference.</p

    Within-participant classification analyses.

    No full text
    <p>a) Classification rates for native and non-native participants for each of the three stimulus conditions along with group averages (shown with error bars). Participants are sorted based on the averaged results of the three analyses, as indicated by the horizontal lines. Asterisk size indicates the significance level of the result in each of the three conditions. b) Scatter plot of classifier performance with respect to the mean amplitude of the MMN component of individual ERPs measured in the study by Brandmeyer, Desain and McQueen <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0068261#pone.0068261-Korpilahti1" target="_blank">[16]</a>. c) Scatter plot of mean classifier decision rates per condition with respect to behavioral decisions in the identification task reported in that study.</p
    corecore