10 research outputs found

    Processing of invisible social cues.

    Get PDF
    AbstractSuccessful interactions between people are dependent on rapid recognition of social cues. We investigated whether head direction – a powerful social signal – is processed in the absence of conscious awareness. We used continuous flash interocular suppression to render stimuli invisible and compared the reaction time for face detection when faces were turned towards the viewer and turned slightly away. We found that faces turned towards the viewer break through suppression faster than faces that are turned away, regardless of eye direction. Our results suggest that detection of a face with attention directed at the viewer occurs even in the absence of awareness of that face. While previous work has demonstrated that stimuli that signal threat are processed without awareness, our data suggest that the social relevance of a face, defined more broadly, is evaluated in the absence of awareness

    The Neural Representation of Personally Familiar and Unfamiliar Faces in the Distributed System for Face Perception

    Get PDF
    Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human face processing system comprises a core system that analyzes the visual appearance of faces and an extended system for the retrieval of person-knowledge and other nonvisual information. We applied multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all familiar identities and information that distinguishes specific face identities from each other. Both identity-independent familiarity information and face identity could be decoded in an overlapping set of areas in the core and extended systems. Representational similarity analysis revealed a clear distinction between the two systems and a subdivision of the core system into ventral, dorsal and anterior components. This study provides evidence that activity in the extended system carries information about both individual identities and personal familiarity, while clarifying and extending the organization of the core system for face perception

    Prioritized Detection of Personally Familiar Faces

    Get PDF
    We investigated whether personally familiar faces are preferentially processed in conditions of reduced attentional resources and in the absence of conscious awareness. In the first experiment, we used Rapid Serial Visual Presentation (RSVP) to test the susceptibility of familiar faces and faces of strangers to the attentional blink. In the second experiment, we used continuous flash interocular suppression to render stimuli invisible and measured face detection time for personally familiar faces as compared to faces of strangers. In both experiments we found an advantage for detection of personally familiar faces as compared to faces of strangers. Our data suggest that the identity of faces is processed with reduced attentional resources and even in the absence of awareness. Our results show that this facilitated processing of familiar faces cannot be attributed to detection of low-level visual features and that a learned unique configuration of facial features can influence preconscious perceptual processing

    The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception

    Get PDF
    Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human face processing system comprises a core system that analyzes the visual appearance of faces and an extended system for the retrieval of person-knowledge and other nonvisual information. We applied multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all familiar identities and information that distinguishes specific face identities from each other. Both identity-independent familiarity information and face identity could be decoded in an overlapping set of areas in the core and extended systems. Representational similarity analysis revealed a clear distinction between the two systems and a subdivision of the core system into ventral, dorsal and anterior components. This study provides evidence that activity in the extended system carries information about both individual identities and personal familiarity, while clarifying and extending the organization of the core system for face perception

    Prioritized Detection of Personally Familiar Faces.

    Get PDF
    We investigated whether personally familiar faces are preferentially processed in conditions of reduced attentional resources and in the absence of conscious awareness. In the first experiment, we used Rapid Serial Visual Presentation (RSVP) to test the susceptibility of familiar faces and faces of strangers to the attentional blink. In the second experiment, we used continuous flash interocular suppression to render stimuli invisible and measured face detection time for personally familiar faces as compared to faces of strangers. In both experiments we found an advantage for detection of personally familiar faces as compared to faces of strangers. Our data suggest that the identity of faces is processed with reduced attentional resources and even in the absence of awareness. Our results show that this facilitated processing of familiar faces cannot be attributed to detection of low-level visual features and that a learned unique configuration of facial features can influence preconscious perceptual processing

    Attentional blink paradigm.

    No full text
    <p>Faces of different categories of mammals were used as distracters while human faces were presented as targets. The first target (T1) was an inverted face (always a face of a stranger different from those used as T2) and the second target (T2) was an upright face that was either a personally familiar face or the face of a stranger. Stimuli were presented for 80 ms with no interval between stimuli.</p

    Results for each lag during the attentional blink.

    No full text
    <p>Personally familiar faces were detected more frequently than were faces of strangers during the attentional blink.</p

    Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72

    No full text
    Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer's disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration
    corecore