1,181 research outputs found
Pacific Ocean Forcing and Atmospheric Variability are the Dominant Causes of Spatially Widespread Droughts in the Contiguous United States
The contributions of oceanic and atmospheric variability to spatially widespread summer droughts in the contiguous United States (hereafter, pan-CONUS droughts) are investigated using 16-member ensembles of the Community Climate Model version 3 (CCM3) forced with observed sea surface temperatures (SSTs) from 1856 to 2012. The employed SST forcing fields are either (i) global or restricted to the (ii) tropical Pacific or (iii) tropical Atlantic to isolate the impacts of these two ocean regions on pan-CONUS droughts. Model results show that SST forcing of pan-CONUS droughts originates almost entirely from the tropical Pacific because of atmospheric highs from the northern Pacific to eastern North America established by La Nia conditions, with little contribution from the tropical Atlantic. Notably, in all three model configurations, internal atmospheric variability influences pan-CONUS drought occurrence by as much or more than the ocean forcing and can alone cause pan-CONUS droughts by establishing a dominant high centered over the US montane West. Similar results are found for the Community Atmosphere Model version 5 (CAM5). Model results are compared to the observational record, which supports model-inferred contributions to pan-CONUS droughts from La Nias and internal atmospheric variability. While there may be an additional association with warm Atlantic SSTs in the observational record, this association is ambiguous due to the limited number of observed pan-CONUS. The ambiguity thus opens the possibility that the observational results are limited by sampling over the 20th-century and not at odds with the suggested dominance of Pacific Ocean forcing in the model ensembles
Gemini NorthNIRI Spectra of Pluto and Charon: Simultaneous Analysis of the Surface and Atmosphere
94035We report on our analysis of blended Pluto and Charon spectra over the wavelength range 1.4 to 2.5 m as obtained by the NIRI instrument on Gemini North on June 25-28, 2004. The data have a resolving power () around 1500 and a SNR around 200 per pixel. The observed blended spectra are compared to models that combine absorption from the solid ice on the surface using Hapke theory, and absorption from the gaseous atmosphere. We assume the spectrum is a combination of several spatially separate spectral units: a CH4-rich ice unit, a volatile unit (an intimate mixture of N2, CH4 and CO), and a Charon unit (H2O, ammonia hydrate and kaolinite). We test for the presence of hydrocarbons (i.e. C2H6) and nitriles (i.e. HCN) and examine cases where additional ices are present as either pure separate spatial units, mixed with the CH4-rich unit or part of the volatile unit. We conclude that 2-4 of Plutos surface is covered with pure-C2H6 and our identification of C2H6 is significantly strengthened when absorption due to gaseous CH4 is included. The inclusion of Plutos atmosphere demonstrates that low-resolution, high-SNR observations are capable of detecting Plutos atmosphere during a time when Plutos atmosphere may have been undergoing rapid changes (1988-2002) and no high-resolution spectra were obtained. In particular, we identify features at 1.665 and 2.317 m as the Q-branch of the 23 and 3+4 bands of gaseous CH4, respectively. The later band is also evident in many previously published spectra of Pluto. Our analysis finds it is unnecessary to include 13CO to explain the depth of the 2.405 m, which has been previously suggested to be a spectral blended with C2H6, but we cannot definitively rule out its presence. Funding for this work (Cook) has been provided by a NASA-PATM grant
Circular orbits and spin in black-hole initial data
The construction of initial data for black-hole binaries usually involves the
choice of free parameters that define the spins of the black holes and
essentially the eccentricity of the orbit. Such parameters must be chosen
carefully to yield initial data with the desired physical properties. In this
paper, we examine these choices in detail for the quasiequilibrium method
coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we
compare two independent criteria for choosing the orbital frequency, the
"Komar-mass condition" and the "effective-potential method," and find excellent
agreement. Second, we implement quasi-local measures of the spin of the
individual holes, calibrate these with corotating binaries, and revisit the
construction of non-spinning black hole binaries. Higher-order effects, beyond
those considered in earlier work, turn out to be important. Without those,
supposedly non-spinning black holes have appreciable quasi-local spin;
furthermore, the Komar-mass condition and effective potential method agree only
when these higher-order effects are taken into account. We compute a new
sequence of quasi-circular orbits for non-spinning black-hole binaries, and
determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D,
revtex4; Fixed error in computing proper separation and updated figures and
tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec.
IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in
Eq. (A7b), included minor changes from PRD editin
The Nuclear Spectroscopic Telescope Array (NuSTAR)
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer
mission that will carry the first focusing hard X-ray (5 -- 80 keV) telescope
to orbit. NuSTAR will offer a factor 50 -- 100 sensitivity improvement compared
to previous collimated or coded mask imagers that have operated in this energy
band. In addition, NuSTAR provides sub-arcminute imaging with good spectral
resolution over a 12-arcminute field of view. After launch, NuSTAR will carry
out a two-year primary science mission that focuses on four key programs:
studying the evolution of massive black holes through surveys carried out in
fields with excellent multiwavelength coverage, understanding the population of
compact objects and the nature of the massive black hole in the center of the
Milky Way, constraining explosion dynamics and nucleosynthesis in supernovae,
and probing the nature of particle acceleration in relativistic jets in active
galactic nuclei. A number of additional observations will be included in the
primary mission, and a guest observer program will be proposed for an extended
mission to expand the range of scientific targets. The payload consists of two
co-aligned depth-graded multilayer coated grazing incidence optics focused onto
solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus
rocket into a low-inclination Earth orbit. Data will be publicly available at
GSFC's High Energy Astrophysics Science Archive Research Center (HEASARC)
following validation at the science operations center located at Caltech.Comment: 9 pages, 5 figures, to appear in Proceedings of the SPIE, Space
Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ra
The low-order wavefront sensor for the PICTURE-C mission
The PICTURE-C mission will fly a 60 cm off-axis unobscured telescope and two high-contrast coronagraphs in successive high-altitude balloon flights with the goal of directly imaging and spectrally characterizing visible scattered light from exozodiacal dust in the interior 1-10 AU of nearby exoplanetary systems. The first flight in 2017 will use a 10^(-4) visible nulling coronagraph (previously flown on the PICTURE sounding rocket) and the second flight in 2019 will use a 10^(-7) vector vortex coronagraph. A low-order wavefront corrector (LOWC) will be used in both flights to remove time-varying aberrations from the coronagraph wavefront. The LOWC actuator is a 76-channel high-stroke deformable mirror packaged on top of a tip-tilt stage. This paper will detail the selection of a complementary high-speed, low-order wavefront sensor (LOWFS) for the mission. The relative performance and feasibility of several LOWFS designs will be compared including the Shack-Hartmann, Lyot LOWFS, and the curvature sensor. To test the different sensors, a model of the time-varying wavefront is constructed using measured pointing data and inertial dynamics models to simulate optical alignment perturbations and surface deformation in the balloon environment
Structural steel framing options for mid- and high rise buildings
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.Includes bibliographical references.Selecting a structural system for a building is a complex, multidisciplinary process. No design project is the same; however, there are certain criteria that are commonly true in the initial phase of evaluating different structural schemes. These criteria encompass all aspects of a full, functioning building, forcing the design team to be creative in their approach of satisfying all facets. An investigation was carried out for several structural steel framing options available to designers. The schemes describe how each successfully resist lateral loads explaining the advantages and disadvantages of each. Many of the structural design tools available for initial structural system evaluation are strength based. The demand for cheaper, more efficient and taller structures has paved the way for performance based design. A simple cantilever beam performance based analysis was utilized to evaluate three common structural framing schemes in order to gain a better understanding of the performance of each. Results give recommendations for efficient structural solutions for proposed buildings as a function of height.by Jason A. Cook.M.Eng
Circulating gluten-specific FOXP3 + CD39 + regulatory T cells have impaired suppressive function in patients with celiac disease
Background
Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood.
Objective
We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells.
Methods
Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134).
Results
Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells.
Conclusion
This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis
- …
