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Key Points 

 Models forced with observed sea surface temperatures replicate spatially widespread 

summer droughts over the contiguous United States.  

 Variability in the tropical Pacific explains almost all the ocean forcing of these 

droughts in the models. The Atlantic plays an ambiguous role. 

 Contributions to these droughts from internal atmospheric variability are roughly 

equal to or greater than the collective ocean forcing. 
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Abstract 

The contributions of oceanic and atmospheric variability to spatially widespread summer 

droughts in the contiguous United States (hereafter, pan-CONUS droughts) are investigated 

using 16-member ensembles of the Community Climate Model version 3 (CCM3) forced 

with observed sea surface temperatures (SSTs) from 1856 to 2012. The employed SST 

forcing fields are either (i) global or restricted to the (ii) tropical Pacific or (iii) tropical 

Atlantic to isolate the impacts of these two ocean regions on pan-CONUS droughts. Model 

results show that SST forcing of pan-CONUS droughts originates almost entirely from the 

tropical Pacific because of atmospheric highs from the northern Pacific to eastern North 

America established by La Niña conditions, with little contribution from the tropical Atlantic. 

Notably, in all three model configurations, internal atmospheric variability influences pan-

CONUS drought occurrence by as much or more than the ocean forcing and can alone cause 

pan-CONUS droughts by establishing a dominant high centered over the US montane West. 

Similar results are found for the Community Atmosphere Model version 5 (CAM5). Model 

results are compared to the observational record, which supports model-inferred contributions 

to pan-CONUS droughts from La Niñas and internal atmospheric variability. While there 

may be an additional association with warm Atlantic SSTs in the observational record, this 

association is ambiguous due to the limited number of observed pan-CONUS. The ambiguity 

thus opens the possibility that the observational results are limited by sampling over the 20
th

-

century and not at odds with the suggested dominance of Pacific Ocean forcing in the model 

ensembles. 
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1. Introduction 

Droughts in the contiguous United States (CONUS) are common, but spatially 

widespread droughts that span most of CONUS (herein pan-CONUS droughts) stand out as 

prominent events, pose significant and specific challenges, and happen less frequently than 

events that are confined to smaller regions. Pan-CONUS droughts claim higher costs when 

compared to localized droughts of similar severity because, by definition, they impact more 

areas while also reducing redundancies in associated water or agricultural resources that 

might act to mitigate more regionalized events. For instance, the 1988 US drought ranked 

among the most spatially extensive in recent history and cost the US $40 billion, largely in 

agricultural losses (Trenberth et al. 1988; Kogan 1995; Andreadis et al. 2005; Rippey 2015). 

Similarly, the 2012 US drought, which covered over 60% of CONUS (NCDC 2013) and is 

the most recent pan-CONUS drought, cost the US an estimated $30 billion, again largely in 

agricultural losses (Rippey 2015). Pan-CONUS droughts occur an average of 21 times per 

century and have been a consistent feature of US hydroclimate as recorded in moisture-

sensitive tree-ring records over the last millennium (e.g. Cook et al. 2014). Understanding the 

causes, characteristics, and dynamics of these droughts is thus important for developing 

adaptation strategies and defining their potentially changing frequency and severity in a 

warming climate.  

Characterizing spatial and temporal variability in CONUS drought conditions begins 

with an understanding of the oceanic influences. Cold Pacific conditions (Ropelewski and 

Halpert 1986; Gershunov and Barnett, 1998a,b; McCabe et al. 2004; Hoerling et al. 2009; 

Herweijer et al. 2006; Kam et al. 2014; Steinman et al. 2012) and warm Atlantic conditions 

(Enfield et al. 2001; McCabe et al. 2008; Sutton and Hodson, 2005; Hodson et al. 2010) both 

exert strong controls on CONUS drought variability. Cold phases of the El-Niño Southern 

Oscillation (ENSO; La Niña events) and Pacific Decadal Oscillation (PDO) produce 
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atmospheric highs over the northern Pacific Ocean that shift subtropical jets poleward, divert 

storm tracks north, and cause precipitation deficits in the US Southwest and Great Plains in 

boreal winter (Sarachik and Cane, 2010; Trenberth and Guillemot, 1996; Ropelewski and 

Halpert 1986; Mantua et al. 1997; Seager et al. 2005; Hoerling et al. 2014). Warm phases of 

the AMO reduce summer precipitation broadly over the US by suppressing the Great Plains 

low-level jet and the North American Monsoon (Kushnir et al. 2010; Hu et al. 2011; Oglesby 

et al. 2012; Nigam et al. 2011; Williams et al. 2017). When these drought-favorable 

conditions occur simultaneously, the modes can collectively strengthen their hydroclimate 

influences over the CONUS (Mo et al. 2009; Hu and Feng 2012; Coats et al. 2015). For 

ENSO and PDO, which impose similar canonical wet-dry patterns over the CONUS (e.g., 

Baek et al. 2017), their combined hydroclimate influence is strengthened (weakened) when 

the two modes are in (out of) phase (Gershunov and Barnett, 1998a; Wang et al. 2014; Hu 

and Huang, 2009; Yu and Zwiers, 2007). AMO-induced drying over the Great Plains and 

Southeast, and to a lesser degree the Southwest can create a background state of persistent 

aridity or wetness over which influences from modes such as ENSO are imprinted. Given the 

above-described understanding, we hypothesize that a global ocean in which cold tropical 

Pacific and warm northern Atlantic conditions occur contemporaneously (Hoerling and 

Kumar 2003; McCabe et al. 2004, 2008) represent conditions that strongly increase the 

probability of pan-CONUS droughts (Schubert et al. 2009; Cook et al. 2014; Coats et al. 

2015). 

Studies that employ atmospheric general circulation models (AGCMs) forced with 

observed SSTs have not only reproduced these Pacific and Atlantic influences on drought 

over the CONUS (Schubert et al. 2004, 2008; Seager et al. 2005; Herweijer et al. 2006; 

Kushnir et al. 2010; Hoerling et al. 2009; Seager and Hoerling 2014), but have also 

emphasized the role of stochastic internal atmospheric variability in US hydroclimate (Seager 
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et al. 2014; Cook et al. 2018; Ault et al. 2017; Stevenson et al. 2015; Coats et al. 2015). 

Paleoclimate proxy-model comparisons demonstrate that coupled atmosphere-ocean GCMs 

reproduce the frequency and spatiotemporal characteristics of pan-CONUS droughts, but not 

due to the same underlying atmosphere-ocean states (e.g. Coats et al. 2015), thus further 

highlighting the influence of internal atmospheric variability on these events. Understanding 

differences between how pan-CONUS droughts are simulated and how they have occurred in 

the past is therefore critical for accurately characterizing future risks from these events.  

Given the roles played by both the atmosphere and ocean, it is important to diagnose 

the relative contributions of the Pacific, Atlantic, and internal atmospheric variability to pan-

CONUS droughts. Experiments that force AGCMs with global SSTs or regionally restricted 

SSTs represent one method of parsing these influences. For instance, Seager et al. (2005) 

examined 16-member ensembles from the NCAR Community Climate Model version 3 

(CCM3) AGCM (Kiehl et al. 1998) forced with historical SSTs prescribed over (i) the global 

ocean or (ii) only over the tropical Pacific with a coupled ocean mixed layer elsewhere. These 

experiments demonstrated the primary role of tropical Pacific variability in forcing persistent 

droughts over the US Southwest and Great Plains. Similarly, Kushnir et al. (2010) used 16-

member ensembles of the CCM3 AGCM forced with historical SSTs prescribed over (i) the 

global ocean or (ii) only over the tropical Atlantic with climatological SSTs elsewhere. They 

showed that warm tropical Atlantic conditions during April to September induce a Gill-type 

response that places a low to the west with northerly, subsiding flow over southwest North 

America, while warm tropical Atlantic conditions during October to March suppress 

convection over the tropical Pacific and create a La Niña-like atmospheric wave train. Their 

experiments thus supported a causal link between warm tropical Atlantic conditions and 

reduced precipitation over the US in both warm and cold seasons. In this paper, we use the 

three 16-member ensembles from Seager et al. (2005) and Kushnir et al. (2010) and an 
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additional 16-member ensemble from the newer Community Atmosphere Model version 5 

(CAM5) AGCM forced with historical SSTs over the global ocean. These runs allow us to 

parse the contributions of ocean forcings and atmospheric variability to pan-CONUS 

droughts and compare model results to observations. Collectively, we address the following 

questions: 

1) What are the respective roles of the tropical Pacific, Atlantic, and internal 

atmospheric variability in forcing pan-CONUS droughts? 

2) What atmospheric and oceanic conditions are optimal for forcing pan-CONUS 

droughts? 

3) Are identified atmospheric and oceanic conditions consistent across model 

simulations and observations? 

 

2. Data and Methods 

2.1. Model Data 

We employ three 16-member ensembles of the CCM3 AGCM forced by three 

different prescribed oceanic conditions from 1856 to 2007 or 2012, depending on the 

experiment. SSTs are fixed in the following configurations: (i) Global Ocean-Global 

Atmosphere (GOGA), (ii) Pacific Ocean-Global Atmosphere-Mixed Layer (POGA-ML), and 

(iii) Tropical Atlantic-Global Atmosphere (TAGA). The GOGA configurations span 1856 – 

2012 and force CCM3 with globally observed SSTs derived from Kaplan et al. (1998) and 

Hadley Centre Sea Ice and SST (HadISST; Rayner et al. 2003); Kaplan SST and HadISST 

were specified over the tropical Pacific (20°N – 20°S) from 1856 – 2012 and outside the 

tropical Pacific from 1870 – 2012, respectively. Kaplan SSTs were used if available outside 

the tropical Pacific from 1856 – 1870; climatological SSTs from HadISST were used 

otherwise (Seager et al. 2005). The POGA-ML configuration spans 1856 – 2012 and forces 
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CCM3 with a tropical Pacific specified with Kaplan SSTs, but otherwise couples the AGCM 

to a uniform mixed layer to calculate SSTs elsewhere (Seager et al. 2005). Finally, the TAGA 

configuration spans 1856 – 2007 and forces CCM3 with observed tropical Atlantic (30°N – 

30°S) SSTs from the GOGA configuration but imposes climatological SSTs elsewhere 

(Kushnir et al. 2010). We also employ a 16-member ensemble from CAM5 that spans 1856 – 

2016 and is forced with the same observed global SSTs used in the CCM3 GOGA 

experiment; we use only the 1856 – 2012 interval from this experiment for consistency with 

the CCM3 GOGA and POGA-ML experiments. For all of the model experiments, the 

ensemble mean is interpreted as the atmospheric state that is forced by the prescribed SSTs.  

While the sampled ensemble mean will always be influenced by random atmospheric noise, 

the effect will diminish as the size of the ensemble increases. To determine the robustness of 

the 16-member ensemble mean we have performed subsampling experiments with smaller 

ensemble sizes.  Even a randomly selected 8-member ensemble generates a mean that is very 

similar to the ensemble mean using all 16 members (not shown). We therefore regard the 

ensemble mean from the 16 members as a robust characterization of the ocean forced 

response in the atmospheric model (Seager et al. 2005; Kushnir et al. 2010; Yang et al. 2017). 

 Volumetric soil moisture and geopotential height are taken from each simulation at 

80-cm depth (linearly interpolated for CAM5) and 500-mbar height (501.3-mbar for TAGA), 

respectively. For the purposes of our analyses, these variables are standardized by subtracting 

and dividing by their respective 1856 – 2012 (2007 for TAGA) means and standard 

deviations. Analyzed SSTs are centered by subtracting their respective 1856 – 2012 (2007 for 

TAGA) means. We take June-July-August (JJA) averages for volumetric soil moisture and 

calendar-year averages for SST and geopotential height; JJA and December-January-

February (DJF) averages are also taken for SST and geopotential height, but because our 

results do not change appreciably between DJF, JJA, and calendar-year averages, we only 
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show SST and geopotential height results for calendar-year averages. All fields are linearly 

detrended from 1856 – 2012 (2007 for TAGA) to remove the largest influences from 

anthropogenic warming effects and focus primarily on interannual to decadal signals. Output 

for all analyzed variables across all the ensembles have ~2.8° grid resolution.  

2.2. Observational Data 

We use monthly Model Calibrated Drought Index (MCDI) data from Williams et al. 

(2017) as our metric of JJA soil moisture over the observational record for comparison with 

the modeled soil moisture. MCDI covers the CONUS domain with 1/8° resolution from 1895 

– present and is based on the Palmer Z-index, which is a standardized monthly formulation of 

a bucket soil moisture model forced by precipitation and reference evapotranspiration (Allen 

et al. 2005). By formulation, the Z-index contains little inter-monthly persistence of previous 

soil moisture conditions (Palmer 1965). In most other applications, the Z-index is used to 

calculate the Palmer Drought Severity Index (PDSI), but inter-month persistence of PDSI 

anomalies is prescribed based on field measurements from just one region of the CONUS 

(Palmer 1965). For the MCDI, inter-month persistence is spatially explicit, varies seasonally, 

and is calibrated to match that of monthly 0-200 cm soil-moisture anomalies simulated by the 

Noah Multi-Parameterization Land Surface Model (Ek et al., 2003; Niu et al., 2011), which 

includes effects of land-surface characteristics such as soil type and vegetation (Williams et 

al. 2017). The 0 – 200 cm depth is not only relevant for most root-zones, but also comparable 

to the 80-cm soil depth that is used from the models.  

We employ the HadISST dataset and NOAA ESRL 20
th

 Century Reanalysis Project 

Version 2c for monthly values of observational SST and reanalyzed geopotential height, 

respectively. HadISST has global SST coverage from 1870 to present on a 1° grid, while the 

20
th

 Century Reanalysis product offers, among several fields, global geopotential height 

coverage at 500 mbar from 1851 – 2014 on a 2° grid. We compute DJF, JJA, and calendar-
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year means of SST and geopotential height from the observational products. In keeping with 

the model analyses, all MCDI, SST, and geopotential height fields are linearly detrended over 

their common interval from 1895 – 2014. Again, because the results do not change 

appreciably between DJF, JJA, and calendar-year averages for SSTs and geopotential heights, 

we only show results for calendar-year averages. 

2.3 Climate Indices 

 We use the NINO3.4 and AMO indices as characterizations of tropical Pacific and 

Atlantic Ocean variability, respectively. The NINO3.4 index is defined as linearly detrended 

DJF average SST anomalies in the 5°N – 5°S and 170° – 120°W region; El Niño and La Niña 

events are defined as years (concurrent with the year in which January and February are 

sampled) in which the NINO3.4 index is a half standard deviation above or below the mean, 

respectively. The AMO index is computed as the linearly detrended JJA average SST 

anomaly in the 0° – 60°N and 0° – 80°W region, with positive and negative AMO defined as 

years in which the AMO index is a half standard deviation above or below the mean, 

respectively.  

2.4 Pan-CONUS Drought Analysis 

We focus on a region of North America approximately encompassing the contiguous 

United States (24.5 – 49°N to 59.5 – 127°W), with some extension into northern Mexico. 

Pan-CONUS droughts are defined as years in which at least 50% of the area-weighted 

landmass of our study region is under drought, with drought classified at each grid point as 

when simulated JJA volumetric soil moisture at 80-cm depth is at least half a standard 

deviation below the mean. Our classification method thus treats pan-CONUS droughts as 

binary events (i.e. either a given year meets the pan-CONUS drought threshold or it does 

not). Our method furthermore counts the number of years of drought as opposed to the 

number of discrete drought events, even though some droughts span consecutive years. We 
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note that previous studies examining similarly widespread droughts over North America (e.g. 

Cook et al. 2014; Coats et al. 2015) have used a different definition of pan-CONUS droughts 

that require the area-averages of PDSI in at least three of four geographic regions (American 

Southwest, Central Plains, Southeast, and Northwest) to be simultaneously below a specific 

drought threshold. We have broken from this precedent to allow every location within the 

CONUS to potentially contribute to a pan-CONUS drought and to allow a more continuous 

measure of drought extent relative to a discrete measure defined by four specific regions. 

Both definitions nonetheless generate a similar selection of pan-CONUS droughts (not 

shown).  

Using our definition, we composite (i) soil moisture, (ii) SST, and (iii) geopotential 

height for all pan-CONUS drought years across each 16-member ensemble: 

XC =  
∑ ∑ 𝑿𝑖,𝑗

𝑁𝑖
𝑗=1

16
𝑖=1

∑ 𝑁𝑖
16
𝑖=1

 = pan-CONUS Composite, 

where Xi,j is latitude-longitude matrix of either soil moisture, SST, or geopotential height in 

the i
th

 ensemble member in a year, j, identified as a pan-CONUS drought year and Ni is the 

total number of pan-CONUS drought years in the i
th

 ensemble. To isolate the component of 

the pan-CONUS drought composite forced by SSTs, we compute the 16-member ensemble 

mean, replicate it 16 times, and then composite across the same years identified as pan-

CONUS droughts in each of individual ensemble members. We regard this later composite as 

the product of ocean forcing (e.g. Seager et al. 2005; Kushnir et al. 2010; Yang et al. 2017) 

and herein refer to it as the “ocean contribution” to pan-CONUS droughts: 

𝑿𝑂= 
∑ ∑ 𝑿𝑖,𝑗̅̅ ̅̅ ̅𝑁𝑖

𝑗=1
16
𝑖=1

∑ 𝑁𝑖
16
𝑖=1

 = 𝑂𝑐𝑒𝑎𝑛 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 

where 𝑿𝑖,𝑗
̅̅ ̅̅̅ is a latitude-longitude matrix of either soil moisture, geopotential height, or SST 

representing the ensemble average in year j of the i
th

 ensemble member identified as a pan-

CONUS drought year. The difference between the pan-CONUS drought composite and the 
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ocean contribution in any given ensemble year is attributed to internal atmospheric variability 

and referred to herein as the “atmospheric variability contribution:” 

𝑿𝐴 = 𝑿𝐶 − 𝑿𝑂 = Atmospheric Variability Contribution  

As a measure of the relative contributions to the pan-CONUS drought composite, we divide 

the volumetric soil moisture over the CONUS domain associated with the ocean contribution 

(XO,SM) or atmospheric variability contribution (XA,SM) by that of the total pan-CONUS 

drought composite (XC,SM)  (herein termed the “percent contribution” to the pan-CONUS 

drought). 

% 𝑂𝑐𝑒𝑎𝑛 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  
𝑿𝑶,𝑺𝑴

𝑿𝑪,𝑺𝑴
 

% 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑉𝑎𝑟𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  
𝑿𝑨,𝑺𝑴

𝑿𝑪,𝑺𝑴
 

Because we attribute all non-ocean forcings to atmospheric variability, our characterization of 

atmospheric variability will include any effects from land-surface feedbacks. The 

characterized atmospheric variability component is therefore not exclusively associated with 

the atmosphere, but our convention is sufficient for our present purpose, which is to 

specifically separate ocean influences from the other atmospheric and land conditions that 

generate pan-CONUS droughts. The potential role of land-surface feedbacks in impacting 

pan-CONUS droughts is nonetheless discussed in Section 4.  

Pan-CONUS droughts and their associated SSTs and geopotential heights are also 

composited using the observational data over the interval from 1895 – 2014. We use the same 

definition of pan-CONUS drought and require that 50% of the area-weighted CONUS 

domain have MCDI values at least half a standard deviation below the mean at each grid 

point. We note that the MCDI represents 0-200 cm soil moisture as opposed to the 80 cm 

layer that is analyzed in the SST-forced model runs. Because the observational record 

represents just one realization of atmospheric variability over the observational interval given 
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the observed SST state, we do not decompose the contributions of ocean forcing and 

atmospheric variability as we do in the model experiments. We nevertheless compare the 

spatial features of modeled and observational pan-CONUS drought composites, as well as 

their years of incidence and frequency of occurrence.  

 

3. Results 

3.1 Does the CCM3 Model Simulate Pan-CONUS Droughts? 

The distribution of the number of pan-CONUS droughts simulated across the CCM3 

ensemble members from 1895 – 2012 (a period chosen to be roughly consistent with the 

available observational data) is represented as a boxplot in Figure 1. The 16 members 

produce 7 to 16 pan-CONUS drought years, the upper distribution of which is comparable to 

the 16 pan-CONUS droughts identified in the observation-based MCDI record. The CCM3 

model thus not only simulates the occurrence of pan-CONUS droughts, but also a range of 

events that includes the number that occurred in the observational record. Figure 1 also plots 

time series of the number of CCM3 GOGA ensemble members simulating pan-CONUS 

droughts each year from 1856 – 2012, as well as the occurrence of observed pan-CONUS 

droughts as identified in the MCDI from 1895 – 2012. The distribution of pan-CONUS 

droughts is expected to be forced in part by SSTs, but based on analyses presented 

subsequently, atmospheric variability plays a significant role in driving pan-CONUS 

droughts and introduces significant variability in their occurrence.  

3.2 CCM3 Ocean and Internal Atmospheric Influences 

Figure 2 maps the composites for all pan-CONUS droughts across the CCM3 GOGA, 

POGA-ML, and TAGA 16-member ensembles from 1856 – 2012 (2007 for TAGA), as well 

as the associated SST and geopotential height anomalies. The corresponding ocean and 

atmospheric variability contributions to pan-CONUS droughts are also shown in Figure 2 for 
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each ensemble of simulations. The GOGA ensemble simulates 277 pan-CONUS droughts 

and yields a composite characterized by strong cooling over the tropical Pacific and strong 

warming over the northern Pacific, reflecting a clear La Niña and cold PDO pattern. 

Conversely, the Atlantic is characterized by largely neutral AMO conditions. Geopotential 

height anomalies at 500 mbar show a canonical La Niña-induced atmospheric ridge that 

stretches from the western north Pacific to eastern North America. These ocean contributions 

generally (Figure 2, middle column), and the La Niña conditions specifically, play a large 

role in the composited soil moisture anomalies during pan-CONUS droughts. Internal 

atmospheric variability (Figure 2, right column) nevertheless contributes a substantial 

additional ridge in this region centered over the US montane west. Ocean and internal 

atmospheric variability contribute a respective 53% and 47% to the severity of the simulated 

pan-CONUS droughts. Perhaps most importantly, atmospheric variability assists in drying 

specific regions of CONUS that appear to have weaker connections to ocean forcing. In the 

CCM3 GOGA ensemble, atmospheric variability assists drying in the montane West and the 

northeastern regions of CONUS, which are regions that dry less appreciably due to the 

associated ocean forcings.  

The middle row of Figure 2 shows the composites for all pan-CONUS droughts in the 

16-member CCM3 POGA-ML ensembles from 1856 – 2012. The POGA-ML ensemble 

experiment yields 248 pan-CONUS droughts, a small reduction from the 277 years simulated 

in the GOGA ensemble, and a pan-CONUS drought composite very similar to the GOGA 

experiment. Almost all associated SST and geopotential height anomalies associated with 

pan-CONUS droughts in the GOGA composite are preserved in the POGA-ML composite, 

albeit with anomalies that are more modest in magnitude. Although both the GOGA and 

POGA-ML ensembles have the same prescribed SSTs over the tropical Pacific, our selection 

of pan-CONUS droughts is selected only based on the criteria outlined in Section 2.4. The 
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high degree of similarity between the SST and geopotential height fields in the GOGA and 

POGA-ML ensembles are thus emergent characteristics underlying a common physical 

cause. Though less severe, the ocean and atmospheric variability contributions in the POGA-

ML experiment are almost identical to their respective CCM3 GOGA counterparts in spatial 

extent; the SST and geopotential height fields in the GOGA and POGA-ML composite yields 

a spatial correlation of 0.62 and 0.94, respectively. Moreover, the ocean and atmospheric 

variability contribute a respective 46% and 54% to the severity of pan-CONUS droughts in 

the POGA-ML experiment, similar to the 53% and 47% contributions in the GOGA 

experiment. The high degree of similarity between the CCM3 GOGA and POGA-ML results 

not only highlights the importance of a cold tropical Pacific in driving pan-CONUS droughts, 

but also suggests that tropical Pacific variability accounts for virtually all the ocean forcing of 

pan-CONUS droughts in the GOGA simulations.  

The TAGA ensemble experiment (Figure 2, bottom row) yields 189 pan-CONUS 

droughts, which is lower than the number simulated in the GOGA (N = 277) and POGA-ML 

(N = 248) experiments. This decrease is largely attributable to the greatly diminished 

contribution from ocean forcing as evidenced by a largely neutral tropical Atlantic with little 

to no SST anomalies associated with the pan-CONUS drought composite. The ocean 

contributes just 15% to the severity of pan-CONUS droughts and is tied to a uniformly 

modest drying over the CONUS domain. Conversely, atmospheric variability contributes 

85% to the severity of the TAGA-simulated pan-CONUS droughts. The strong similarity 

between the pan-CONUS drought composite and the contribution from atmospheric 

variability is a clear indication that the atmosphere drives pan-CONUS droughts in the 

TAGA ensemble. Virtually all the atmospheric anomalies, particularly the CONUS ridge 

centered over the western CONUS, and all drying over CONUS are attributable to 

atmospheric variability in the TAGA experiment. The weak Atlantic Ocean contribution in 
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the TAGA experiment is consistent with what is inferred by the striking similarity of the 

POGA-ML and GOGA results. Given that the POGA-ML configuration only prescribes SSTs 

over the tropical Pacific and otherwise couples the AGCM to a uniform ocean mixed layer, 

Atlantic SSTs in the POGA-ML ensemble represent a teleconnected response to tropical 

Pacific forcings. The virtually identical Atlantic SSTs in the POGA-ML and GOGA results 

thus indicate that any role the Atlantic plays in forcing pan-CONUS droughts may 

themselves be a component of the tropical Pacific forcing. Within the CCM3 model, the very 

weak ocean contribution of the TAGA ensemble suggests that the Atlantic plays a limited 

role in driving pan-CONUS droughts and thus reinforces the dominant role of the tropical 

Pacific in forcing such events.  

To further demonstrate the roles of the Pacific and Atlantic as characterized in the 

ensemble of simulations, we plot the NINO3.4 index in Figure 3 and the number of ensemble 

members simulating a pan-CONUS drought each year from 1856 – 2012 for both the GOGA 

and POGA-ML configurations. The occurrence of pan-CONUS drought years is not broadly 

synchronous across the two experiments, which is expected given that atmospheric variability 

contributes roughly half to the severity (and therefore occurrence) of pan-CONUS droughts 

in both experimental ensembles. There are furthermore no years in which all 16 members 

simulate pan-CONUS droughts, regardless of the ocean conditions; this is further in keeping 

with the large contribution from atmospheric variability, which can considerably obscure the 

oceanic forcings. Despite the influence of internal atmospheric variability, however, there are 

clear clusters of simulated pan-CONUS droughts during or very close to persistent La Niña 

years. For instance, 1857 – 1863, 1870 – 1876, 1893 – 1895, 1909 – 1911, 1945 – 1957, 1960 

– 1963, 1974 – 1976, and 1999 – 2002 are all periods of high pan-CONUS drought 

occurrence across the 16-member ensembles that also fall during or otherwise span periods 

with multiple La Niña events. The dominant role of ENSO within the ocean forcing 
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component is also reflected in the mean NINO3.4 index across all pan-CONUS droughts, 

which is -0.47°C and -0.49°C for GOGA and POGA-ML, respectively. Similar to the Pacific 

analysis, Figure 4 plots a time series of the AMO index and the number of ensemble 

members simulating pan-CONUS droughts each year from 1856 – 2007 for the CCM3 

GOGA and TAGA experiments. While there are clusters of pan-CONUS droughts (due to La 

Niñas) in the GOGA ensemble, the TAGA time series is more uniform, i.e. more randomly 

distributed across the ensemble. This is consistent with the dominant role played by 

atmospheric variability in the TAGA experiment. Furthermore, there does not appear to be 

any association between a given AMO state and pan-CONUS drought incidence in either the 

GOGA or TAGA ensembles. The mean AMO state during all pan-CONUS droughts is 0.0°C 

for both GOGA and TAGA ensembles. The potential role of the Atlantic is revisited in 

Section 3.5 in a combined observational and model analysis. 

3.3 Atmospheric Variability: Hemispheric Patterns 

The internal atmospheric variability contribution in the pan-CONUS drought 

composites consists of a high-pressure ridge over North America. The individual events 

represented within the composites, however, are generated by many dynamical patterns that 

do not distribute consistently in space. To illustrate this point, Figure 5 plots geopotential 

height anomalies due to atmospheric variability for eight individual pan-CONUS droughts 

from the CCM3 GOGA ensemble, as well as the global CCM3 GOGA composite for 

geopotential height and soil moisture across all pan-CONUS droughts. The oceanic 

influences have been removed from the geopotential height fields in Figure 5 to isolate the 

impacts of internal atmospheric variability. While the contribution of atmospheric variability 

to pan-CONUS droughts yields an atmospheric ridge over North America that is not 

connected to a wider hemispheric pressure pattern, Figure 5 shows eight unique events with 

considerable range in their hemispheric pressure patterns. Any given year could have 
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conditions that deviate from the composite pattern so long as the net influence of the ocean 

and atmospheric variability forces a ridge, and thus drying, over North America. 

3.4 Comparison of CCM3 and CAM5 GOGA Simulations 

The CCM3 has been shown to simulate precipitation variability over the CONUS 

domain with excellent fidelity (e.g. Seager et al. 2005; Seager and Hoerling, 2014; Hack et al. 

1998), but it is an older generation atmospheric model. We therefore compare the simulation 

of pan-CONUS droughts in the CCM3 GOGA ensemble to a 16-member GOGA ensemble 

generated with the newer CAM5. Figure 6 shows the composite for all pan-CONUS droughts 

across the CAM5 GOGA ensemble with its associated SST and geopotential height 

anomalies, as well as its corresponding ocean and atmospheric variability contributions to 

pan-CONUS droughts. The CAM5 and CCM3 GOGA composites simulate similar numbers 

of pan-CONUS droughts over the full 16-member ensembles: 303 and 277, respectively, and 

exhibit broad consistencies in their spatial features (i.e. between the top row of Figure 2 and 

Figure 6). This provides support for interpretations of the CCM3 simulations as 

representative of responses in newer-generation models. There nonetheless are some 

differences between the CCM3 and CAM5 simulations. For instance, CCM3 associates larger 

SST anomalies with pan-CONUS droughts in the Pacific, as well as a stronger atmospheric 

response to those SSTs. In contrast, CAM5 associates pan-CONUS droughts with more 

modest SST anomalies globally, which is reflected in the CAM5 ocean contribution (39%) 

being less than that of CCM3 (53%). Pan-CONUS drought conditions thus appear more 

strongly dictated by SSTs in the CCM3 model than in the CAM5 model. Despite these 

differences, the results provide some confidence that the associations between pan-CONUS 

droughts, ocean forcings, and atmospheric variability are consistent across the two 

generations of models, even though we do not currently have CAM5 simulations with 

POGA-ML and TAGA configurations to fully test the consistency. The agreement across the 
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GOGA ensembles and the demonstrated skill of CCM3 in simulations of North American 

hydroclimate is nevertheless suggestive of the fact that the analyzed behavior of CCM3 is not 

a unique feature of the earlier generation of NCAR model.  

3.5 ENSO and AMO Influence on the Spatial Extent of CONUS Droughts 

We use both the CCM3 and CAM5 GOGA ensembles to generate boxplots for the 

percent of CONUS under drought (determined by dividing the number of grid points under 

drought by the total number of grid points) from 1856 – 2012 under various conditions 

(Figure 7). The “All” column is a boxplot of the percent of CONUS under drought for all 

years. The “NINO3.4 < -1.5,” “-1.5 < NINO3.4 < -1.0,” and “ -1.0 < NINO3.4 < -0.5” 

columns show GOGA ensemble aggregate boxplots of the percent of CONUS under drought 

only for years in which the NINO3.4 index is < -1.5, -1.5 to -1.0, and -1.0 to -0.5 standard 

deviations from the mean, respectively. Similarly, the “AMO > 1.0” and “AMO < -1.0” 

columns provide boxplots of the percent of CONUS under drought only for years in which 

the AMO index is greater than one standard deviation above and less than one standard 

deviation below the mean, respectively, in the two GOGA simulations. These variously 

sampled distributions indicate that La Niñas increase the percent of CONUS under drought in 

both the CCM3 and CAM5 experiments. As the severities of La Niña events intensify, the 

percent of CONUS under drought also generally increases. In contrast, the percent of 

CONUS under drought decreases (very slightly for the CCM3) for the subset of years in 

which the AMO index is one standard deviation above the mean, which is opposite of the 

expected response (e.g. Kushnir et al. 2010). The percent of CONUS under drought also 

decreases for the subset of years in which the AMO index is one standard deviation below the 

mean.  

The distributions of the various samples above are tested for significance using a two-

way Kolmogorov–Smirnov (KS) test (Chakravarti et al. 1967). The percent of CONUS under 
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drought during La Niñas increases significantly (p<0.05) relative to the distribution that 

includes all years in both the CCM3 and CAM5 GOGA experiments; this is true for all 

subsets of La Niña extremeness. The percent of CONUS under drought during warm AMO 

events (AMO > 1.0 standard deviation), is significantly smaller (p<0.05) than the distribution 

that includes all years for the CAM5 experiment, while the CCM3 experiment is not 

significantly different from the distribution for all years. The percent of CONUS under 

drought during cold AMO events (AMO < -1.0 standard deviation) is significantly smaller 

(p<0.05) than the distribution that includes all years for both the CCM3 and CAM5 

experiment. The percent of CONUS under drought during warm AMO events is significantly 

different from that during cold AMO events for CCM3, while the difference is not significant 

for CAM5. For the subset of years in which the AMO index is more than half a standard 

deviation above or below the mean, neither the CAM5 nor the CCM3 experiments yield 

distributions that are significantly different from the distribution that includes all years. At the 

half standard deviation threshold, the percent of CONUS under drought during warm AMO 

events is moreover not significantly different from that during cold AMO events for both the 

CCM3 and CAM5. Our significance tests show cold Pacific conditions to clearly impact the 

percent of US under drought but yield results that are not significant for warm Atlantic 

conditions; the only significant result is for CAM5, but towards a wetting instead of drying. 

While reasonably instructive in the context of the GOGA experiments, we also note that these 

assessments may combine ENSO and AMO influences and thus are not as definitive as the 

other analyses we have performed herein to separate the Pacific and Atlantic influences.  

3.6 Sensitivity of results to pan-CONUS drought definition 

 A threshold of 50% of the study area is used to define pan-CONUS droughts 

throughout the model analyses. Here we explore the sensitivity of our results to higher spatial 

thresholds. Table 1 shows the number of pan-CONUS droughts, the percent ocean 
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contribution, and the percent atmospheric variability contribution for spatial thresholds of 

50%, 55%, 60%, 65%, and 70% area for each of the four 16-member ensembles. The number 

of pan-CONUS droughts predictably decreases across all four ensembles as the spatial extent 

criterion increases. The decreases are substantial—each 5% increase in area cuts the number 

of pan-CONUS droughts by as much as 50%, demonstrating that the number of pan-CONUS 

droughts is sensitive to the value of the spatial threshold. The relative contributions of the 

ocean and atmospheric variability are nonetheless robust across the range of spatial 

thresholds, notwithstanding increasingly higher contributions from atmospheric variability 

for larger spatial thresholds. This increase is consistent with the results of Figure 2 that show 

atmospheric variability to play a key role in drying regions of CONUS with weaker 

connections to ocean forcings. Given that ocean-induced drying may be spatially limited to 

regions of strong teleconnections, it is perhaps expected that the contribution of atmospheric 

variability to pan-CONUS droughts must increase with higher spatial thresholds. The trend 

toward higher atmospheric variability contributions with increased drought-area thresholds is 

evident in the CAM5 GOGA, CCM3 GOGA, and CCM3 POGA-ML ensembles, but 

nonexistent in the CCM3 TAGA ensemble, as essentially all droughts were driven by 

atmospheric variability in that experiment.  

3.7 Comparison to Observations 

 The top panel of Figure 8 shows a composite of mean observed MCDI, geopotential 

height, and SST anomalies during observed pan-CONUS drought years (N = 16) from 1895 – 

2014. There is evidence of weak La Niña-like conditions in the tropical Pacific, but the 

northern Pacific is reflective of a warm PDO pattern, as opposed to the cold PDO pattern that 

emerges in the models. The atmospheric ridge does not resemble a canonical La Niña-forced 

response but is more like the atmospheric contribution plots of Figure 2, likely attesting to the 

fact that the observed ridge is caused mainly by internal atmospheric variability. Furthermore, 
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Figure 8 shows a warm north Atlantic basin that forms a canonical positive AMO horseshoe 

pattern over the North Atlantic in observed pan-CONUS drought years, which is not seen in 

our model results. Interpretations of differences between the observational and model results, 

however, must consider the limited sample size of 16 observed pan-CONUS droughts relative 

to the increased sampling provided by the 16-member model ensembles and the dominant 

role of internal atmospheric variability inferred from the models. These considerations are 

particularly important for the Atlantic given its possibly stronger role over decadal to 

centennial timescales (as opposed to the incidence of yearly events that we have analyzed in 

the context of pan-CONUS droughts), which makes even more ambiguous the association 

between the Atlantic warm anomaly and pan-CONUS droughts suggested by Figure 8 (this is 

similarly true of the contrasting PDO states in the observations and model simulations).  

 With the above perspective, we further sub-composite the 16 observed pan-CONUS 

drought years based on the value of their associated AMO index. The distribution of the 

AMO index for the 16 pan-CONUS droughts (Figure 9, bottom) yields three cold AMO, 

seven neutral AMO, and six warm AMO years thereby suggesting that the pan-CONUS 

drought composite (Figure 8, top) is weighted towards warm Atlantic conditions by just six 

of the 16 years. The cold and neutral AMO groups furthermore include La Niña conditions, 

pointing to conflated Pacific and Atlantic hydroclimatic influences. While the strong AMO 

group indicates weak El Niño conditions, the significance of the six years is ambiguous when 

considering that there are 42 years in which the AMO index is at least half a standard 

deviation above its 1895 – 2012 interval mean. In other words, it is entirely possible that the 

warm AMO association seen in the composite over the observational record is due to chance.  

To further demonstrate this possibility, we subsample from the two GOGA ensembles 

the same 16 years in which pan-CONUS droughts occurred in the observational data, yielding 

256 model years for each of the CCM3 and CAM5 16-member experiments. Some of these 
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256 model years will have pan-CONUS droughts and others will not; Figure 9 shows the 

composites for (i) those years that yield pan-CONUS droughts and (ii) those years that do 

not. We note that SSTs from the GOGA simulations and HadISST are both observation-

based and nearly identical; while there is potential for model biases in the atmospheric 

response (e.g. Merrifield and Xie, 2016), there are no such biases in the GOGA SST fields. 

Figure 9 thus provides a very close approximation of how the same SSTs seen in the 

observational composite (Figure 9) contribute to droughts in the models. If the Atlantic were 

at play, we would expect an increased incidence of pan-CONUS droughts relative to the rate 

over all years (1856 – 2012) of the 16-member GOGA ensembles. However, only 10.9 – 

12.9% of the 256 selected model years (28/256 and 33/256 for the CAM5 and CCM3 GOGA 

experiments, respectively) simulate pan-CONUS droughts, which is comparable to the 

frequency of pan-CONUS drought simulated in all years from the GOGA runs (12.1% and 

11.0% for CAM5 and CCM3, respectively). Warm Atlantic conditions thus do not seem to 

affect the likelihood of pan-CONUS droughts in the model simulations and even the 28 to 33 

pan-CONUS drought years that include warm AMO conditions are accompanied in aggregate 

by conflated warm extratropical North Atlantic and strong La Niña conditions, making it 

highly ambiguous whether warm Atlantic conditions contributed to pan-CONUS conditions 

in any material way. Additionally, the warm SSTs in the North Atlantic do not extend into the 

tropics where the principle association with North American hydroclimate resides (Sutton 

and Hodson 2005, 2007, Kushnir et al. 2010; Ruprich-Robert, 2017) and the composite of 

years that do not simulate pan-CONUS droughts yield neutral hydroclimate conditions over 

the CONUS in both the CAM5 and CCM3 ensembles despite anomalously warm northern 

Atlantic conditions. Conversely, the same composite shows a tropical Pacific with largely 

neutral to only very weak La Niña conditions. 
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These results highlight an advantage of the combined GOGA, POGA-ML, and TAGA 

model experiments, namely their ability to isolate Pacific and Atlantic influences. More 

importantly, they demonstrate that associations between the Atlantic and pan-CONUS 

droughts in the observations and model simulations are likely not at odds, but rather 

reconcilable when considering the limited sampling and likely conflation of Pacific and 

Atlantic influences in the observational data.  

 

4. Discussion and Conclusions 

This study has assessed the contributions of ocean forcing and atmospheric variability 

to pan-CONUS droughts using atmospheric model experiments forced with multiple 

configurations of global or regional SSTs. Our analysis of simulated pan-CONUS droughts 

demonstrates that internal atmospheric variability plays a role that is roughly equal to or 

greater than the collective ocean forcing; internal atmospheric variability can combine with 

the ocean forcing to either nullify or amplify drying. Tropical Pacific Ocean variability alone 

can explain virtually all of the ocean contribution to pan-CONUS droughts. Conversely, the 

model results suggest that the Atlantic does not play a significant role in forcing pan-CONUS 

droughts, as there is little association between these droughts and warm conditions in the 

north Atlantic. While observations do appear to associate a warm Atlantic with pan-CONUS 

droughts, closer analyses suggest that this association is not robust given the small number of 

years that qualify as pan-CONUS drought events in the observational data (N = 16), the 

dominant role of atmospheric variability, and the conflated influences of the Atlantic and 

Pacific Oceans. The model results as they relate to the Atlantic are thus not necessarily at 

odds with observations, but the comparison is limited given the small sample size in the 

observational dataset.  
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Our results are notwithstanding the caveat that we have examined only a single 

lineage of atmospheric model, namely the NCAR CCM3 and CAM5 models, and a relatively 

coarse resolution for each. The associations we have characterized in this study may therefore 

not extend across multiple models when considering varying model biases, model 

resolutions, and model responses to similar forcings. Additional experiments using different 

models and resolutions are thus important for determining whether the associations that we 

have characterized are specific to CCM3 and CAM5. One limitation is that there are few 

SST-forced model ensembles of comparable size and length to the 16-member ensembles we 

have analyzed herein. Many existing forced-SST modeling experiments employ ensembles 

that are on the order of only 3-5 members and only cover the post-1979 period (e.g. the 

AMIP CMIP5 experiments; Taylor et al. 2012), a reality that is not likely to change in CMIP6 

(Eyring et al. 2016). A multi-model ensemble analysis is nevertheless needed to assess 

whether the model characterization that we present herein is consistent across many models, 

and most importantly whether it is consistent with reality. 

Nonetheless, the large role of internal atmospheric variability found in our results has 

key implications for the predictability of pan-CONUS droughts. Although statistical and 

physical models can predict El Niños and La Niñas with varying skill six or (sometimes) 

more months in advance (Latif et al. 1994, 1998; Cane et al. 1986; Graham et al. 1987a,b; 

Barnett et al. 1988; Barnston and Ropeleski, 1992; Barnston et al. 2012), predicting internal 

atmospheric variability is limited to shorter lead times due to the chaos of atmospheric 

motions and the absence of guiding by slower evolving ocean conditions. According to our 

modeling results, internal atmospheric variability complicates the predictability of pan-

CONUS droughts because it can either exacerbate or nullify drying imposed by La Niñas, 

leading to (i) strong La Niña years with low incidence of pan-CONUS droughts (1880, 1904, 

1925, 1943, 1999, 2000, 2006, 2008, 2011), (ii) weak La Niña years with high incidence of 
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pan-CONUS droughts (1872, 1895, 1946, 1960, 1962, 1975), and even (iii) strong El Niño 

years with pan-CONUS droughts (1897, 1900, 1903, 1912, 1931, 1964, 1966, 1969, 1973, 

1977, 2003). Despite the unequivocal influence of La Niñas, the ocean forcing contributes 

only ~50% to the severity of the pan-CONUS drought composite; the large role of 

atmospheric variability relative to the ocean forcing thus poses an inherent limit to the 

predictability of these events.  

Though not considered in our study, we note the important role of land-surface 

feedbacks on the hydrological cycle over the US (Xue et al. 2001; Beljaars et al. 1996; Koster 

et al. 2003, 2009, 2012) and the potential for antecedent soil moisture conditions to influence 

the occurrence of pan-CONUS droughts. Antecedent soil moisture not only imposes a 

supply-side constraint on evapotranspiration that limits the amount of precipitation recycled 

back to a region (Elfatih et al. 1996; Wang-Erlandsson et al. 2014; Koster et al. 2009), but 

through its influence on latent cooling (Fisher et al. 2007a, b) and vegetation (Charney 1975, 

1977), also modifies albedo, surface heat flux, planetary boundary layer height, and 

convective energy (Koster et al. 2011, 2014, 2016; Guo et al. 2011, Cook et al. 2015). Studies 

suggest a positive feedback between soil moisture and precipitation (wetter soils lead to more 

evapotranspiration leading to more precipitation and wetter soils) and have identified regions 

of CONUS as hotspots of soil moisture-precipitation coupling (Koster et al. 2004, 2006, 

2016; Pal and Eltahir, 2002; Findell et al. 1997, 2003). Hence, properly modeling land-

surface feedbacks over coupling hotspots may offer increased predictability of pan-CONUS 

droughts. In this study, the implications for predictive power of pan-CONUS droughts 

beyond the timescale of internal atmospheric predictability are limited to those regions of 

CONUS that are sensitive to ocean forcings (i.e. US Southwest and Central Plains). While we 

have attributed all non-ocean forced drying to atmospheric variability, it is likely that some of 
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this drying can be attributed to land-surface feedbacks, which would increase the potential 

predictability of pan-CONUS droughts.  

Notwithstanding land-surface influences and the abovementioned caveat, our results 

suggest the contemporaneous cold Pacific Ocean and warm Atlantic Ocean identified as 

being ideal for drought over North America (Hoerling and Kumar 2003; Schubert et al. 2009) 

is unlikely to generate drought across enough of the US to cause a pan-CONUS drought 

when unaided by internal atmospheric variability. Moreover, we find little evidence for a 

strong Atlantic influence, in contrast to previous findings. For instance, Cook et al. (2014) 

and Coats et al. (2015) found negative correlations between the AMO and (i) tree-ring PDSI 

in the North American Drought Atlas and (ii) PDSI calculated in last-millennium simulations 

from the CMIP5/PIMP3 archive, respectively. Coats et al. (2015) furthermore concluded that 

pan-CONUS drought probabilities increase during warm phases of the AMO. We note, 

however, that both studies derived those associations with positive AMO conditions using 

observational data and are thus subject to the same possibility of conflated Pacific influences 

that were explored in Section 3.6. Our Atlantic results are also distinct from previous studies 

that show an active AMO influence on multi-decadal droughts (Cook et al. 2016; Feng et al. 

2008, 2011; Coats et al. 2015, 2016). While single-year pan-CONUS events are strongly 

dependent on ENSO and atmospheric variability, decadal-scale events are associated with 

smaller hydroclimate anomalies and may be more sensitive to the slight but persistent 

background drying that the AMO can provide. Pan-CONUS droughts and multi-decadal 

droughts are thus not directly comparable, and our results should be interpreted with caution 

regarding AMO influences on droughts over multi-decadal timescales.  
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Table 1. Sensitivity of model results to the pan-CONUS spatial extent threshold. The number 

of pan-CONUS droughts, the percent ocean contribution, and the percent atmospheric 

variability contribution are given for spatial thresholds of increasing percentages of the 

CONUS under drought for CAM5 and CCM3 GOGA, CCM3 POGA-ML, and CCM3 TAGA 

ensembles. 

 

 

 
 

  

Spatial Extent Threshold (% Area) Number of Droughts Ocean Contribution Atmospheric Variability Contribution

50 277 53% 47%

55 142 52% 48%

60 74 48% 52%

65 34 45% 55%

70 9 45% 55%

50 248 46% 54%

55 128 45% 55%

60 53 42% 58%

65 13 36% 64%

70 2 29% 71%

50 189 15% 85%

55 82 15% 85%

60 33 15% 85%

65 10 20% 80%

70 4 22% 78%

50 303 39% 61%

55 161 37% 63%

60 88 32% 68%

65 44 31% 69%

70 16 27% 73%

CCM3 POGA-ML

CCM3 TAGA

CCM3 GOGA

CAM5 GOGA
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Figure 1. (left) Boxplot of the number of pan-CONUS droughts simulated (7 to 16) in the 

CCM3 GOGA ensemble from 1895 – 2012. Red star indicates the number of pan-CONUS 

droughts (16) identified in the MCDI data. (right) Time series of the number of ensemble 

members simulating pan-CONUS droughts each year from 1856 to 2012 CCM3 GOGA. 

Gray lines represent identified pan-CONUS droughts in the observational-based MCDI data. 

Black solid line at 1895 marks the beginning of observational data availability. 
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Figure 2. (left column) Composite of all pan-CONUS droughts (as estimated from 

volumetric soil moisture at 80 cm) and their associated annual SST and 500mbar anomalies 

from 1856-2007 across the 16-member (top row) CCM3 GOGA, (middle row) CCM3 

POGA-ML, and (bottom row) CCM3 TAGA ensembles. The sample size in the composite is 

given in bottom right corner. (middle column) The ocean contribution to the pan-CONUS 

drought composite. The percent contribution of the ocean to the severity of pan-CONUS 

droughts is given in bottom right corner. (right column) The internal atmospheric 

contribution to the pan-CONUS drought composite. The percent contribution of internal 

atmospheric variability to the severity of pan-CONUS droughts is given in bottom right 

corner. Red box in top right panel represents our study region (24.5 – 49°N to 59.5 – 127°W). 
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Figure 3. Time series of the NINO3.4 index and the number of ensemble members 

simulating pan-CONUS drought each year from 1856 to 2012 for the CCM3 GOGA and 

POGA-ML configurations. 
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Figure 4. Time series of the AMO index and the number of ensemble members simulating 

pan-CONUS droughts each year from 1856 to 2007 for the CCM3 GOGA and TAGA 

configurations. 
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Figure 5. Global plots of 8 individual internal atmospheric variability contributions to pan-

CONUS droughts and their associated annual 500mbar geopotential height anomalies from 

the CCM3 GOGA 16-member ensemble. The composite of the same field and for soil 

moisture for all pan-CONUS droughts from the CCM3 GOGA 16-member ensemble is given 

in the bottom right panel.   
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Figure 6. Same as top row of Figure 2, but for the CAM5 GOGA experiment. Red box in top 

right panel represents our study region (24.5 – 49°N to 59.5 – 127°W). 
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Figure 7. CCM3 and CAM5 GOGA ensemble aggregate boxplots of the percent of CONUS 

under drought between 1856 – 2012 under various ENSO and AMO conditions (standard 

deviations above the mean). 
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Figure 8. (top) Composite of pan-CONUS droughts (N = 16) in observation-based MCDI 

data and their associated SST and geopotential height over the 1895 – 2014 interval. The pan-

CONUS drought years are: 1910, 1924, 1930, 1931, 1933, 1934, 1936, 1940, 1954, 1956, 

1980, 1988, 2002, 2006, 2007, and 2012. (bottom) Observed pan-CONUS drought 

composites based on their AMO index. The number of years is shown in the bottom right 

corner of each map composite. The AMO index values for each of the 16 observed pan-

CONUS droughts in each of their respective groupings are shown underneath the observed 

composite maps. 1910, 1956, and 2002 are cold AMO years. 1924, 1930, 1940, 1954, 1980, 

1988, and 2007 are neutral AMO years. 1931, 1933, 1934, 1936, 2006, and 2012 are warm 

AMO years. 
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Figure 9. (top row) CAM5 and (bottom row) CCM3 GOGA ensemble composites of (i) pan-

CONUS droughts and (ii) remaining years excluding pan-CONUS droughts from only the 

subset of years in which pan-CONUS droughts occurred in the observational record. The 

number of years is shown in the bottom right corner of each map.  

 

 

 

 

 

 

 

 


