13 research outputs found

    Biochemical Testing Revision For Identification Several Kinds of Bacteria

    Get PDF
    البكتيريا هي الجراثيم المسببة للأمراض التي تسبب مجموعة متنوعة من الأمراض لدى البشر ، تتراوح من الطفيفة إلى التي تهدد الحياة. مطلوب الاكتشاف المناسب للعامل البكتيري المسبب للمرض من أجل العلاج المناسب للمرضى المصابين بهذه الاضطرابات.           يتم تصنيف البكتيريا إلى مجموعتين: البكتيريا موجبة الجرام والبكتيريا سلبية الجرام. يحتوي كلا النوعين من البكتيريا على مجموعة متنوعة من السمات البيوكيميائية الموروثة التي تسمح لنا بتمييزها ، والتحقق من وجودها وغيابها ، وتحديد ما إذا كانت سالبة الجرام أو موجبة الجرام. نتيجة لذلك ، تركز المراجعة الحالية على وصف العديد من الاختبارات الكيميائية الحيوية في قطعة واحدة. الاسـتنـتاجات           يتم التعرف على البكتيريا موجبة الجرام باستخدام الاختبارات الكيميائية الحيوية مثل اختبار الكاتلاز ، واختبار تجلط الدم ، واختبار التحلل المائي للنشا ، واختبار النترات ، بينما يتم تحديد البكتيريا سالبة الجرام باستخدام الاختبارات الكيميائية الحيوية مثل اختبار أوكسيديز ، واختبار اليورياز ، واختبار إندول ، واختبار الكبريت ، و اختبار الميثيل الأحمر / voges-proskauer. تم إنشاء اختبار المؤشر التحليلي 20E للتمييز بين بكتيريا Enterbacteriacea سالبة الجرام والبكتيريا غير Enterbactriacea. تم أيضًا إنشاء ميكروبات موجبة الجرام مثل أنواع المكورات العنقودية وأنواع المكورات الدقيقة والكائنات الحية الأخرى ذات الصلة باستخدام طريقة API.Abstract:       Bacteria are pathogenic germs that cause a variety of diseases in humans, ranging from minor to life-threatening. Proper detection of the disease-causing bacterial agent is required for proper treatment of patients affected with these disorders. Bacteria are classified into two groups: Gram Positive Bacteria and Gram Negative Bacteria. Both types of bacteria have a variety of inherited biochemical traits that allow us to distinguish them, check for their presence and absence, and determine whether they are gram negative or gram positive. As a result, the current review focuses on describing many biochemical assays in a single piece. Conclusion           Gram positive bacteria are identified using biochemical tests such as the catalase test, coagulase test, starch hydrolysis test, and nitrate test, while Gram negative bacteria are identified using biochemical tests such as the oxidase test, urease test, indole test, sulfur test, and methyl red /voges-proskauer test. The analytical profile index test 20E was created to distinguish between Gram-negative Enterbacteriacea and non-Enterbactriacea bacteria. Gram-positive microbes such as Staphylococcus species, Micrococcus species, and other related organisms have also been generated using the API method

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Study the impact of different preparation methods on the structural and dielectric properties of nickel-zinc ferrite

    Get PDF
    In the current study, nickel-zinc ferrite nanoparticles Ni (1-x) ZnxFe2O4 (X= 0, 0.25, 0.50, 0.75, 1) have been arranged by sol-gel auto combustion and common chemical precipitation methods, The samples were described by x-ray (XRD) deflection, Fourier converts Infrared Spectroscopy (FTIR), dielectric perpetual and dielectric loss element. the XRD analysis confirms the cubic lone phase spinel configuration for all the synthesized materials. Average crystalline size is estimated of the (311) peaks of the x-ray diffractogram using Scherrer’s formulation institute in the range 38.90 to 37.71 nm for sol-gel auto burning method and from 18.61 to 23.41 nm for co-precipitation method.                                                                        The Fourier transform infrared spectroscopy was studied so as to assert the construction of the spinel phase and to recognize the kind of carbon remaining in the samples. The dielectric fixed and the dielectric loss factor were measured in the range between 50 Hz – 3 MHz at room temperature were located to be reduced with a rise in regularity. 

    Evaluation of berberine inhibitory effects on influenza neuraminidase enzyme: A molecular dynamics study

    No full text
    Introduction: Due to the high prevalence and drug resistance reported for the influenza virus in recent years, much research is being conducted on the discovery and introduction of more effective drugs against the virus. In this regard, the present bioinformatics study examined the inhibitory effects of berberine, a plant-based alkaloid, on influenza virus neuraminidase using docking and molecular dynamics studies. Methods: To conduct this study, the three-dimensional structure and PDB file of influenza virus neuraminidase were prepared from the protein and molecular information database, and the structure file of the berberine and oseltamivir (as positive control) molecules were prepared from the PubChem database. Using GROMACS software, simulation and molecular dynamics calculations were performed in the absence of an inhibitor. Molecular docking studies were performed using AutoDock software, and re-simulation of the protein-ligand complex was performed using GROMACS software. Results: Berberine was bound to the neuraminidase molecule with three hydrogen bonds and eleven hydrophobic bonds at the binding site. The amount of binding energy (BE) of berberine and oseltamivir was equal to -7.93 and -6.27 kcal/mol with the estimated inhibition constant (EIC) of 1.5 and 25.2 μM, respectively. Over simulation time, the radius of gyration (Rg) of the enzyme at berberine binding increased, but there was no significant difference in system energy changes (TE). Conclusion: Due to berberine binding, structural changes occur in the secondary and tertiary structures of influenza virus neuraminidase. The large number of created bonds, the low level of binding energy, and the low concentration of the EIC indicate the high tendency of berberine to bind to the binding site of neuraminidase

    IMPROVING THE ANTIBACTERIAL ACTIVITY BY THE COMBINATION OF ZIRCONIUM OXIDE NANOPARTICLES (ZrO2) AND CEFTAZIDIME AGAINST KLEBSIELLA PNEUMONIAE

    Get PDF
    Introduction: Klebsilla pneumoniae is one of must opportunistic pathogens that causes nosocomial infection, UTI, respiratory tract infections and blood infections. ZrO2 nanoparticles have antimicrobial activity against some pathogenic bacteria and fungi. Ceftazidime is one of third generation cephalosporins groups of antibiotecs, characterized by its broad spectrum on bacteria in general and particularly on Enterobacteriaceae family like Klebsiella spp. Method: Diverse clinical samples of Klebsilla pneumoniae were isolated from several hospitals in Baghdad – Iraq and ZrO2 nanoparticles was investigated against it. Ceftazidime was also investigated against K. pneumoniae. Both of ZrO2 nanoparticles and ceftazidime were mixed together and investigated against K. pneumoniae. Results: The result showed that ZrO2 nanoparticles were effectivity on inhibiting opportunistic pathogens. By using zirconium oxide nanoparticles on Klebsiella pneumonia isolates in 24h. of incubation time, inhibition zones were (38,34,10,10,8,0) mm respectively on agar plates. By using ceftazidime alone against the same bacteria inhibition zones were (40,32,10,9,8,0) mm. respectively. Conclusion:The present study results that the antibacterial activity of ceftazidime against bacteria was increased when combination between ZrO2 nanoparticles and the antibiotic had done, because, inhibition zones in case of mixing both of ZrO2 nanoparticles and ceftazidime were (43,40,12,12,10,0) mm respectively. So that we can conclude that the combination of zirconium oxide nanoparticles (ZrO2) and ceftazidime was a useful method for the treatment of Klebsilla pneumonia that cause nosocomial infection, UTI, respiratory tract infections and blood infections

    Investigating the current environmental situation in the Middle East and North Africa (MENA) region during the third wave of COVID-19 pandemic : urban vs. rural context

    No full text
    Background Coronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region. Results An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (p < 0.001) reported a reduction in noise, gathering in tourist areas, and gathering in malls and restaurants. Concerning the pollutants, most urban and rural areas have reported an increase in masks thrown in streets (69.49% vs. 73.22%, resp.; p = 0.003). Plastic bags and hospital waste also increased significantly with the same p-value of < 0.001 in urban areas compared with rural ones. The multifactorial logistic model for urban resident predictors achieved acceptable discrimination (AUROC = 0.633) according to age, crowdedness, noise and few pollutants. Conclusion The COVID-19 pandemic had a beneficial impact on the environment and at the same time, various challenges regarding plastic and medical wastes are rising which requires environmental interventions

    Impact of the COVID-19 pandemic on patients with paediatric cancer in low-income, middle-income and high-income countries: a multicentre, international, observational cohort study

    Get PDF
    OBJECTIVES: Paediatric cancer is a leading cause of death for children. Children in low-income and middle-income countries (LMICs) were four times more likely to die than children in high-income countries (HICs). This study aimed to test the hypothesis that the COVID-19 pandemic had affected the delivery of healthcare services worldwide, and exacerbated the disparity in paediatric cancer outcomes between LMICs and HICs. DESIGN: A multicentre, international, collaborative cohort study. SETTING: 91 hospitals and cancer centres in 39 countries providing cancer treatment to paediatric patients between March and December 2020. PARTICIPANTS: Patients were included if they were under the age of 18 years, and newly diagnosed with or undergoing active cancer treatment for Acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, Wilms' tumour, sarcoma, retinoblastoma, gliomas, medulloblastomas or neuroblastomas, in keeping with the WHO Global Initiative for Childhood Cancer. MAIN OUTCOME MEASURE: All-cause mortality at 30 days and 90 days. RESULTS: 1660 patients were recruited. 219 children had changes to their treatment due to the pandemic. Patients in LMICs were primarily affected (n=182/219, 83.1%). Relative to patients with paediatric cancer in HICs, patients with paediatric cancer in LMICs had 12.1 (95% CI 2.93 to 50.3) and 7.9 (95% CI 3.2 to 19.7) times the odds of death at 30 days and 90 days, respectively, after presentation during the COVID-19 pandemic (p<0.001). After adjusting for confounders, patients with paediatric cancer in LMICs had 15.6 (95% CI 3.7 to 65.8) times the odds of death at 30 days (p<0.001). CONCLUSIONS: The COVID-19 pandemic has affected paediatric oncology service provision. It has disproportionately affected patients in LMICs, highlighting and compounding existing disparities in healthcare systems globally that need addressing urgently. However, many patients with paediatric cancer continued to receive their normal standard of care. This speaks to the adaptability and resilience of healthcare systems and healthcare workers globally

    Microbiologically Influenced Corrosion: Uncovering Mechanisms and Discovering Inhibitor—Metal and Metal Oxide Nanoparticles as Promising Biocorrosion Inhibitors

    No full text
    corecore