94 research outputs found

    The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential

    Get PDF
    The equations of motion for a massive spin-3/2 Rarita-Schwinger field in a finite-range, central, Lorentz scalar potential are developed. It is shown that the resulting density may not be everywhere positive definite.Comment: 9 pages, RevTe

    The Rarita-Schwinger Particles Under de Influence of Strong Magnetic Fields

    Full text link
    In this work, we calculate the solutions of the Rarita-Schwinger equation with the inclusion of the eletromagnetic interaction. Our gauge and coupling prescription choices lead to Dirac-type solutions. One of the consequences of our results are the Landau level occupation of particles, quite different from the usual spin 1/2 particle system occupation numbers.Comment: 12 page

    A complete set of nascent transcription rates for yeast genes

    Get PDF
    The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA polymerase densities determined either by run-on or immunoprecipitation using specific antibodies. The yeast Saccharomyces cerevisiae is the ideal model organism to generate a complete set of nascent transcription rates that will prove useful for many gene regulation studies. By combining genomic data from both the GRO (Genomic Run-on) and the RNA pol ChIP-on-chip methods we generated a new, more accurate nascent transcription rate dataset. By comparing this dataset with the indirect ones obtained from the mRNA stabilities and mRNA amount datasets, we are able to obtain biological information about posttranscriptional regulation processes and a genomic snapshot of the location of the active transcriptional machinery. We have obtained nascent transcription rates for 4,670 yeast genes. The median RNA polymerase II density in the genes is 0.078 molecules/kb, which corresponds to an average of 0.096 molecules/gene. Most genes have transcription rates of between 2 and 30 mRNAs/hour and less than 1% of yeast genes have >1 RNA polymerase molecule/gene. Histone and ribosomal protein genes are the highest transcribed groups of genes and other than these exceptions the transcription of genes is an infrequent phenomenon in a yeast cell

    Transcriptome Kinetics Is Governed by a Genome-Wide Coupling of mRNA Production and Degradation: A Role for RNA Pol II

    Get PDF
    Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II) subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes

    Mutation of RNA Pol III Subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and Disrupts Zebrafish Digestive Development

    Get PDF
    The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-Δ yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function

    Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects

    Full text link
    corecore