3,556 research outputs found

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Goonhilly: a new site for e-MERLIN and the EVN

    Full text link
    The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.Comment: 10 pages, 2 figue

    Polynomial super-gl(n) algebras

    Get PDF
    We introduce a class of finite dimensional nonlinear superalgebras L=L0ˉ+L1ˉL = L_{\bar{0}} + L_{\bar{1}} providing gradings of L0ˉ=gl(n)≃sl(n)+gl(1)L_{\bar{0}} = gl(n) \simeq sl(n) + gl(1). Odd generators close by anticommutation on polynomials (of degree >1>1) in the gl(n)gl(n) generators. Specifically, we investigate `type I' super-gl(n)gl(n) algebras, having odd generators transforming in a single irreducible representation of gl(n)gl(n) together with its contragredient. Admissible structure constants are discussed in terms of available gl(n)gl(n) couplings, and various special cases and candidate superalgebras are identified and exemplified via concrete oscillator constructions. For the case of the nn-dimensional defining representation, with odd generators Qa,QˉbQ_{a}, \bar{Q}{}^{b}, and even generators Eab{E^{a}}_{b}, a,b=1,...,na,b = 1,...,n, a three parameter family of quadratic super-gl(n)gl(n) algebras (deformations of sl(n/1)sl(n/1)) is defined. In general, additional covariant Serre-type conditions are imposed, in order that the Jacobi identities be fulfilled. For these quadratic super-gl(n)gl(n) algebras, the construction of Kac modules, and conditions for atypicality, are briefly considered. Applications in quantum field theory, including Hamiltonian lattice QCD and space-time supersymmetry, are discussed.Comment: 31 pages, LaTeX, including minor corrections to equation (3) and reference [60

    Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    Full text link
    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.Comment: 16 pages including 6 figure

    Sharks of the order Carcharhiniformes from the British Coniacian, Santonian and Campanian (Upper Cretaceous).

    Get PDF
    Bulk sampling of phosphate-rich horizons within the British Coniacian to Campanian (Upper Cretaceous) yielded very large samples of shark and ray teeth. All of these samples yielded teeth of diverse members of the Carcharhiniformes, which commonly dominate the fauna. The following species are recorded and described: Pseudoscyliorhinus reussi (Herman, 1977) comb. nov., Crassescyliorhinus germanicus (Herman, 1982) gen. nov., Scyliorhinus elongatus (Davis, 1887), Scyliorhinus brumarivulensis sp. nov., ? Palaeoscyllium sp., Prohaploblepharus riegrafi (MĂźller, 1989) gen. nov., ? Cretascyliorhinus sp., Scyliorhinidae inc. sedis 1, Scyliorhinidae inc. sedis 2, Pteroscyllium hermani sp. nov., Protoscyliorhinus sp., Leptocharias cretaceus sp. nov., Palaeogaleus havreensis Herman, 1977, Paratriakis subserratus sp. nov., Paratriakis tenuis sp. nov., Paratriakis sp. indet. and ? Loxodon sp. Taxa belonging to the families ?Proscylliidae, Leptochariidae, and Carcharhinidae are described from the Cretaceous for the first time. The evolutionary and palaeoecological implications of these newly recognised faunas are discussed

    Some entanglement features of three-atoms Tavis-Cummings model: Cooperative case

    Full text link
    In this paper we consider a system of identical three two-level atoms interacting at resonance with a single-mode of the quantized field in a lossless cavity. The initial cavity field is prepared in the coherent state while the atoms are taken initially to be either in the uppermost excited state "∣eee>|eee>" or The GHZ\textmd{GHZ}-state or the W\textmd{W}-state. For this system we investigate different kinds of atomic inversion and entanglement, which arise between the different parts of the system due to the interaction. Also the relationship, between entanglement and some other nonclassical effects in the statistical properties, such as collapses and revivals in the atomic inversion where superharmonic effects appear, is discussed. The QQ-functions for different cases are discussed. Most remarkably it is found that the GHZ\textmd{GHZ}-state is more robust against energy losses, showing almost coherent trapping and Schr\"odinger-cat states can not be produced from such state. Also the entanglement of GHZ\textmd{GHZ}-state is more robust than the W\textmd{W}-state. Another interesting feature found is that the state which has no pairwise entanglement initially will have a much improvement of such pairwise entanglement through the evolution. Sudden death and sudden revival of atoms-pairwise entanglement are produced with the W\textmd{W}-state.Comment: 14 pages, 7 figure

    Covariant scalar representation of iosp(d,2/2)iosp(d,2/2) quantization of the scalar relativistic particle

    Get PDF
    A covariant scalar representation of iosp(d,2/2)iosp(d,2/2) is constructed and analysed in comparison with existing methods for the quantization of the scalar relativistic particle. It is found that, with appropriately defined wavefunctions, this iosp(d,2/2)iosp(d,2/2) produced representation can be identified with the state space arising from the canonical BFV-BRST quantization of the modular invariant, unoriented scalar particle (or antiparticle) with admissible gauge fixing conditions. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2)iosp(d,2/2) algebra.Comment: 16 pages Late

    The contribution of discrete sources to the sky temperature at 144 MHz

    Get PDF
    This paper is part of the 1st data release of the LoTSS Deep Fields. Š 2020 The European Southern Observatory (ESO)In recent years, the level of the extragalactic radio background has become a point of considerable interest, with some lines of argument pointing to an entirely new cosmological synchrotron background. The contribution of the known discrete source population to the sky temperature is key to this discussion. Because of the steep spectral index of the excess over the cosmic microwave background, it is best studied at low frequencies where the signal is strongest. The Low-Frequency Array (LOFAR) wide and deep sky surveys give us the best constraints yet on the contribution of discrete extragalactic sources at 144 MHz, and in particular allow us to include contributions from diffuse, low-surface-brightness emission that could not be fully accounted for in previous work. We show that, even with these new data, known sources can still only account for around a quarter of the estimated extragalactic sky temperature at LOFAR frequencies.Peer reviewedFinal Accepted Versio

    Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus

    Get PDF
    BACKGROUND AND AIMS: The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS: Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS: A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans
    • …
    corecore