Covariant scalar representation of $\operatorname{iosp}(d, 2 / 2)$ and quantization of the scalar relativistic particle

P. D. Jarvis and I Tsohantjis
Department of Physics, University of Tasmania
GPO Box 252C Hobart, Australia 7001

Abstract

A covariant scalar representation of $\operatorname{iosp}(d, 2 / 2)$ is constructed and analysed in comparison with existing methods for the quantization of the scalar relativistic particle. It is found that, with appropriately defined wavefunctions, this $\operatorname{iosp}(d, 2 / 2)$ produced representation can be identified with the state space arising from the canonical BFV-BRST quantization of the modular invariant, unoriented scalar particle (or antiparticle) with admissible gauge fixing conditions. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the $\operatorname{iosp}(d, 2 / 2)$ algebra.

1 Introduction and Main Results

The understanding of the quantization problem for systems with constraints has had a long development since the seminal monographs of Dirac[1]. The techniques introduced to handle gauge theories such as nonabelian Yang-Mills-Shaw theory and (linearised) gravity culminated in the demonstration of global supersymmetries[2] for such systems, under which gauge and ghost degrees of freedom transform, and which also play a role even at the level of classical dynamics with finitely many degrees of freedom. In certain cases it is possible to unify further these 'quantisation' supersymmetries with other symmetries possessed by the system, particularly those associated with the constraint algebra, so that the entire state space may be constructed from the representation theory of the enlarged algebra (see below). The ultimate goal of such work is that sufficient understanding of the gauge symmetries themselves, the nature of their graded extensions, and the associated representation theory, may enable admissible quantisation(s) to be implemented systematically (and covariantly) at this algebraic level.

In the present paper, some preliminary steps in this direction are taken: the attitude adopted is that the general principles of this algebraic version of the quantisation programme should emerge from detailed consideration of particular case studies. The initial example taken up below, is a quantum mechanical one, that of the scalar relativistic particle. In a following paper[3], it is intended to extend the analysis to the spinning particle. The enlarged algebra in these cases turns out to be an orthosymplectic extension of the Poincaré space-time symmetry algebra. Subsequent papers in this series will consider other first quantised models, as well as second-quantised gauge field theories, for which the full structure of the extended algebra is not yet established.

Before proceeding to discuss the details of the paper and the main results, it is useful to give a brief historical review of the evolution of understanding of the nature of extended symmetries for constraint quantisation. Following the introduction of scalar-vector spacetime supersymmetries in field theory in connection with critical systems[4] and with gauged internal superalgebras[5] the first presentations of BRST[2] and anti-BRST[6] transformations in superspace[7] were given a covariant $\operatorname{osp}(d-1,1 / 2)$ formulation for Yang-Mills-Shaw theory and gravity[8], in which the ghost fields were leading terms in superfield expansions of the graded components of the 'superpotential', and the BRST operators are supertranslations. Such formulations have recently been used in discussions of renormalization and Ward identities[9], and in discussions of higher derivative field theories[10].

With the development of the BFV approach[11] to canonical quantisation of systems with open gauge algebras arises the issue of extended quantisation symmetries also in this context. For the scalar relativistic particle, following earlier analysis[12] on the compatibility of boundary conditions and gauge fixing terms, it was shown $[13,14]$ that the action following from the BFV-BRST canonical analysis does indeed possess an extended spacetime supersymmetry, with respect to $\operatorname{iosp}(d, 2 / 2)$; this was extended to the first quantisation of the spinning particle, the galilean particle and the massless conformally invariant particle[15] and also to the bosonic string[13]. More general approaches to covariant quantisation and string field theory involving orthosymplectic spacetime supersymmetries have also been given[16, 17, 18, 19]. Algebraic aspects of the BFV-BRST extended constraint algebra have been discussed in general, leading to the expectation that [20] osp $(1,1 / 2)$ or $[21] \operatorname{igl}(1 / 1)$ symmetries are always realised; the
bosonic string would then be expected[20] to possess a quantisation covariant with respect to $\operatorname{osp}(26,2 / 2)$.

In the present paper our aim is to give a detailed analysis of the extended $\operatorname{iosp}(d, 2 / 2)$ spacetime quantisation symmetry of the relativistic scalar particle in d dimensional Minkowski space. In recent work Cornwell and Hartley[22, 23] have developed formal aspects of the representation theory of orthosymplectic superalgebras, and this forms the basis of our construction. Specifically, we develop ($\$ 2$ below) a certain massless (irreducible) covariant scalar produced algebra module. This is then compared (§3) with the state space arising from the quantisation of the scalar relativistic particle, following the detailed analyses of Govaerts[26]. After appropriate canonical transformations of variables, and identification of wavefunctions, the respective algebra actions are shown to be homomorphic. Concluding remarks and outlook for further work are given in $\S 4$ below.

The major result of our analysis is thus that the quantisation and (cohomological) identification of physical sates can be obtained for this model, purely from the representation theory of the $\operatorname{iosp}(d, 2 / 2)$ algebra. In concluding this introduction, it should be pointed out that our approach does not require a superfield formalism (Grassmann variables arise only as dynamical degrees of freedom at the classical level in the BFV method), the produced algebra representations being developed explicitly in terms of appropriate multiplets of wavefunctions. Further, the $\operatorname{iosp}(d, 2 / 2)$ covariance is shown directly for the state space, rather than via the derived phase or configuration space path integral representations, as has been shown in other approaches[14, 13]. In fact, issues of gauge invariance for physical states and their inner products certainly arise at the canonical level. As will be discussed further below, their resolution requires taking explicit account of Teichmüller space and modular invariance for this problem. The module homomorphism is between (one of two types of) produced $\operatorname{iosp}(d, 2 / 2)$ representation, and, in technical terms[26], the BFV-BRST canonical quantisation of the modular invariant fundamental hamiltonian description of the unoriented scalar relativistic particle (or antiparticle, respectively).

2 Representation theory of $\operatorname{iosp}(d, 2 / 2)$

In this section we discuss those elements of the representation theory of inhomo-geneous superalgebras $[22,23]$ which will be needed for our algebraic consruction of the superparticle quantisation using the superalgebra $\operatorname{iosp}(d, 2 / 2)$. The abstract theory of induced representations for this case will be treated in a separate work.

Notation

The $\operatorname{iosp}(d, 2 / 2)$ superalgebra is a generalization of $i s o(d, 2)$. The metric tensor g of $\operatorname{iosp}(d, 2 / 2)$ has a diagonal block form with the entries being the metric tensor of $\operatorname{so}(d, 2)$ with -1 occurring $d-1$ times, $g_{a b}=\operatorname{diag}(1,-1, \ldots,-1,1)$, and the symplectic metric tensor being given by $\epsilon_{12}=$ $-\epsilon_{21}=i$ and $\epsilon^{\alpha \beta}=\epsilon_{\alpha \beta}$. Here latin indices take values $0,1, \ldots, d-1, d, d+1$, unless otherwise specified, and greek indices α, β, \ldots take values 1,2 , while $\lambda, \mu, \nu \ldots$ take values $0,1, \ldots, d-1$ The homogeneous even subalgebra is $s o(d, 2) \oplus s p(2, \mathbb{R}) . s o(d, 2)$ is generated by $J_{a b}=-J_{b a}$, and $\operatorname{sp}(2, \mathbb{R})$ is generated by $K_{\alpha \beta}=K_{\beta \alpha}$. The odd generators will be denoted by $L_{a \alpha}$. The inhomogeneous part $i(d, 2 / 2)$ consists of $d+2$ even translations P_{a} in the $(d, 2)$ pseudoEuclidean
space, and two odd nilpotent translations Q_{α}. The generators can also be expressed in a light cone basis where we choose, for the coordinates, momenta and generators

$$
\begin{align*}
x_{ \pm} & =\left(1 /(\sqrt{2})\left(x_{d+1} \pm x_{d}\right)\right. \\
P_{ \pm} & =\left(1 /(\sqrt{2})\left(P_{d+1} \pm P_{d}\right)\right. \\
J_{ \pm a} & =(1 / \sqrt{2})\left(J_{(d+1) a} \pm J_{(d) a}\right) \\
L_{ \pm \alpha} & =(1 / \sqrt{2})\left(L_{(d+1) \alpha} \pm L_{d \alpha}\right) \tag{1}
\end{align*}
$$

Such a choice is not accidental as will become apparent later. In this case latin indices $a, b=$ $0,1, \ldots, d-1,+,-$, while $g_{a b}=\operatorname{diag}(1,-1, \cdots-1)$ and $g_{+-}=g_{-+}=1$. The nonzero $\operatorname{iosp}(d, 2 / 2)$ commutation relations in the light cone choice read as follows [22, 23]:

$$
\begin{align*}
& {\left[J_{a b}, J_{c d}\right] }=-i\left(g_{a c} J_{b d}-g_{b c} J_{a d}+g_{b d} J_{a c}-g_{a d} J_{b c}\right) \\
& {\left[K_{\alpha \beta}, K_{\gamma \delta}\right]=}-\left(\epsilon_{\alpha \gamma} K_{\beta \delta}+\epsilon_{\beta \gamma} K_{\alpha \delta}+\epsilon_{\beta \delta} K_{\alpha \gamma}+\epsilon_{\alpha \delta} K_{\beta \gamma}\right) \\
& {\left[J_{a b}, L_{c \alpha}\right]=-i\left(g_{a c} L_{b \alpha}-g_{b c} L_{a \alpha}\right) } {\left[K_{\alpha \beta}, L_{a \gamma}\right]=-\left(\epsilon_{\alpha \gamma} L_{a \beta}+\epsilon_{\beta \gamma} L_{a \alpha}\right) } \\
& {\left[L_{a \alpha}, L_{b \beta}\right]=} i\left(\epsilon_{\alpha \beta} J_{a b}-i g_{a b} K_{\alpha \beta}\right) \\
& {\left[J_{a b}, P_{c}\right]=-i\left(g_{a c} P_{b}-g_{b c} P_{a}\right) \quad\left[K_{\alpha \beta}, Q_{\gamma}\right]=-\left(\epsilon_{\alpha \gamma} Q_{\beta}+\epsilon_{\beta \gamma} Q_{\alpha}\right) } \\
& {\left[L_{a \alpha}, P_{c}\right]=-i g_{a c} Q_{\alpha} } {\left[L_{a \alpha}, Q_{\beta}\right]=-i \epsilon_{\alpha \beta} P_{a} . } \tag{2}
\end{align*}
$$

It should be noted that the generators satisfying the above algebra are those of the complexification of $\operatorname{iosp}(d, 2 / 2)$. That is, they are linearly independent over \mathbb{R} and \mathbb{C}. Moreover they can be considered as a basis of $\operatorname{iosp}(d+2 / 2)$, the inhomogeneous extension of the compact real form of an appropriate basic classical simple complex Lie superalgebra.* $\operatorname{osp}(d, 2 / 2)$ is the non-compact real form of one of the basic classical simple complex Lie superalgebras $B(m, 1)$ or $D(m, 1)[24]$. It can be obtained from an appropriate automorphism of the compact real forms of the above mentioned superalgebras[25]. A realization of $\operatorname{ssp}(d, 2 / 2)$ is provided by the $d+4$ dimensional supermatices M satisfying

$$
M^{s t} g-(-1)^{[M]} g M=0
$$

where g is the metric tensor (see footnote) and $[M]$ is 0 (for even supermatrices) or 1 (for odd supermatrices) respectively.

The obvious quadratic Casimir operator (the analogue of the mass operator in the Poincare case) is

$$
\begin{equation*}
C_{2}=P_{a} P^{a}+Q_{\alpha} Q^{\alpha} \tag{3}
\end{equation*}
$$

A generalized Pauli-Loubanski operator has been found, and the fourth order Casimir is given by

$$
\begin{equation*}
C_{4}=\frac{1}{3} W_{a b c} W^{a b c}-W_{a b \alpha} W^{a b \alpha}+W_{a \alpha \beta} W^{a \alpha \beta}-\frac{1}{3} W_{\alpha \beta \gamma} W^{\alpha \beta \gamma} \tag{4}
\end{equation*}
$$

[^0]where
\[

$$
\begin{align*}
W_{a b c} & =J_{a b} P_{c}+J_{b c} P_{a}+J_{c a} P_{b} \\
W_{a b \alpha} & =J_{a b} Q_{\alpha}+L_{a \alpha} P_{b}-L_{b \alpha} P_{a} \\
W_{a \alpha \beta} & =i L_{a \alpha} Q_{\beta}+K_{\alpha \beta} P_{a}+i L_{a \beta} Q_{\alpha} \\
W_{\alpha \beta \gamma} & =K_{\alpha \beta} Q_{\gamma}+K_{\beta \gamma} Q_{\alpha}+K_{\gamma \alpha} Q_{\beta} . \tag{5}
\end{align*}
$$
\]

The covariant scalar multiplet.

We now turn to the construction of the covariant scalar multiplet, adapting the exposition of Hartley and Cornwell [22, 23]. Let us start with the definition the covariant representations of the group $\operatorname{ISO}(d, 2)$ which follows exactly the same lines of exposition as that of the normal Poincaré group. It should also be noted that, although not directly used, we should deal with the universal covering group of proper orthochronous $I S O_{0}(d, 2)$. The $d+2$ dimensional pseudoEuclidean space is identified with the coset space $\operatorname{ISO}(d, 2) / S O(d, 2)$. We shall denote a general element of $\operatorname{ISO}(d, 2)$ by (t, Λ) where $(0, \Lambda)$ is a rotation and $(t, 1)$ a translation on the space. The identity, inverse, product, and the action of $\operatorname{ISO}(d, 2)$ on the manifold are respectively given by $(0,1),(t, \Lambda)^{-1}=\left(-\Lambda^{-1} t, \Lambda^{-1}\right),(t, \Lambda)\left(t^{\prime}, \Lambda^{\prime}\right)=\left(t+\Lambda t^{\prime}, \Lambda \Lambda^{\prime}\right)$ and $(t, \Lambda) x=\Lambda x+t$. Let Γ_{0}^{\prime} be a finite dimensional representation of $S O(d, 2)$ carried by infinitely differentiable Borel functions $\phi(x)$ for any point $x \equiv\left(x^{a}\right) \equiv\left(x^{\mu}, x^{d}, x^{d+1}\right)$, and taking values in \mathbb{C}. We shall denote the carrier space by $V_{0}^{\prime}=\mathbb{C}^{\infty}(I S O(d, 2) / S O(d, 2), \mathbb{C})$. $\Phi_{0}^{\prime}(t, \Lambda)$ will denote the operators of the representation corresponding to an element (t, Λ) of $I S O(d, 2)$, and the representation will be denoted by the pair ($\Phi_{0}^{\prime}, V_{0}^{\prime}$). The covariant representation of $I S O(d, 2)$ is a representation induced from the representation Γ_{0}^{\prime} of $S O(d, 2)$ given by

$$
\begin{equation*}
\Phi_{0}^{\prime}(t, \Lambda) \phi_{0}^{\prime}(x)=\Gamma_{0}^{\prime}(\Lambda) \phi_{0}^{\prime}\left(\Lambda^{-1}(x-t)\right) . \tag{6}
\end{equation*}
$$

In the case of a scalar representation $\Gamma_{0}^{\prime}(\Lambda)=I$. This representation provides as usual a representation of the algebra $\operatorname{iso}(d, 2)$ given by

$$
\begin{align*}
\Phi_{0}^{\prime}\left(J_{a b}\right) \phi_{0}^{\prime}(x) & =i\left(x_{a} \frac{\partial}{\partial x^{b}}-x_{b} \frac{\partial}{\partial x^{a}}\right) \phi_{0}^{\prime}(x)+\Gamma_{0}^{\prime}\left(J_{a b}\right) \phi_{0}^{\prime}(x), \tag{7}\\
\Phi_{0}^{\prime}\left(P_{a}\right) \phi_{0}^{\prime}(x) & =i \frac{\partial}{\partial x^{a}} \phi_{0}^{\prime}(x) \tag{8}
\end{align*}
$$

This representation extends naturally to a representation of the universal enveloping algebra $U(i s o(d, 2))$ by defining $\Phi_{0}^{\prime}(1) \phi_{0}^{\prime}(x)=\phi_{0}^{\prime}(x), 1$ being the identity of $U(i s o(d, 2))$. Again for a scalar representation, $\Gamma_{0}^{\prime}\left(J_{a b}\right)=0$.

According to [22] and [29], the above representation is equivalent to a representation of iso $(d, 2)$ produced from the representation Γ_{0}^{\prime} of its subalgebra $s o(d, 2)$, defined as follows. Let $U(i s o(d, 2))$ be regarded as a left $U(s o(d, 2))$-module. This means that the basis of $U(i s o(d, 2))$ will be of the form

$$
\begin{equation*}
P^{r}=\prod P_{0}^{r_{0}} P_{1}^{r_{1}} \ldots P_{d}^{r_{d}} P_{d+1}{ }^{r_{d+1}} \tag{9}
\end{equation*}
$$

for all $r=\left(r_{0}, r_{1} \ldots r_{d}, r_{d+1}\right) \in \mathbb{N}^{d+2}$, and a general element X of $U(i s o(d, 2))$ is given by

$$
\begin{equation*}
X=\sum A_{r} P^{r} \tag{10}
\end{equation*}
$$

where $A_{r} \in U(\operatorname{so}(d, 2)) . \Gamma_{0}^{\prime}$ is carried by infinitely differentiable functions defined on $U(i s o(d, 2))$ regarded as a left $U(s o(d, 2))$ module, and taking values in \mathbb{C}. We shall denote this space of functions by $V_{0}=\operatorname{Hom}_{U(s o(d, 2)}(\mathcal{P}, \mathbb{C})$ where \mathcal{P} is the real vector space spanned by all combinations of P^{r}. Then the produced algebra representations are defined for $\phi_{0} \in V_{0}$ by

$$
\begin{equation*}
\Phi_{0}(X) \phi_{0}(Y)=\phi_{0}(Y X) \quad \text { and } \quad \phi_{0}(A X)=\Gamma_{0}^{\prime}(A) \phi_{0}(X) \tag{11}
\end{equation*}
$$

where $X, Y \in U(i s o(d, 2))$ and $A \in U(s o(d, 2))$. It can also be shown[22] that this definition is equivalent to the following definition of produced representations:

$$
\begin{equation*}
\Phi(X) \phi_{0}(P)=\sum \Gamma_{0}^{\prime}\left((P X)_{r}\right) \phi_{0}\left(P^{r}\right) \tag{12}
\end{equation*}
$$

where $X \in \operatorname{iso}(d, 2), P \in \mathcal{P}$ and $(P X)_{r} \in U(s o(d, 2))$ are to be interpreted as the $U(s o(d, 2))$ combinations of $P X$ in $U(i s o(d, 2))$ regarded as an $U(s o(d, 2))$-module (see (10)). Following $[23,29]$, for each element $\phi_{0}^{\prime} \in V_{0}^{\prime}$, we define a function ϕ_{0} by

$$
\begin{equation*}
\phi_{0}(X)=\Phi_{0}^{\prime}(X) \phi_{0}^{\prime}\left(x_{0}\right) \tag{13}
\end{equation*}
$$

where $x_{0} \in I S O(d, 2) / S O(d, 2)$ is stable under $S O(d, 2)$. Then ϕ_{0} satisfies the definition (11) of the produced algebra representation, and lies in V_{0}. Also for a ψ_{0}^{\prime} such that $\psi_{0}^{\prime}=\Phi_{0}^{\prime}(X) \phi_{0}^{\prime}$ for some X of $i \operatorname{so}(d, 2)$, then there exists a ϕ_{0} of V_{0} defined by (13) using ψ_{0}^{\prime} above, and satisfying $\psi_{0}=\Phi_{0}(X) \phi_{0}$. Thus the representations $\left(\Phi_{0}^{\prime}, V_{0}^{\prime}\right)$ and $\left(\Phi_{0}, V_{0}\right)$ are equivalent; in particular, $\phi_{0}^{\prime}\left(x_{0}\right)=\phi_{0}(1)$. An explicit realization of functions $\phi_{0}^{\prime}(x)$ expressed in terms of $\phi_{0}\left(P^{r}\right)$ that exhibits the above equivalence is given by:

$$
\phi_{0}^{\prime}(x)=\prod_{a} \sum_{r_{a}}\left(1 / r_{a}!\right)\left(-i x^{a}\right)^{r_{a}} \phi_{0}\left(P^{r}\right)
$$

where $a=0,1, \ldots, d, d+1$ and x^{a} take any real value. Then it can be shown, using the definition of the produced representation (11) that relations (6) are satisfied.

We can now proceed to construct the representation (ϕ, V) of $\operatorname{iosp}(d, 2 / 2)$ produced by the trivial representation of $\operatorname{osp}(d, 2 / 2)$. This is precisely what should be called a covariant scalar representation of $\operatorname{iosp}(d, 2 / 2)$. The definition of the produced Lie superalgebra representations is the same as for Lie algebras mentioned above. The $U(\operatorname{iosp}(d, 2 / 2))$ regarded as a $U(o s p(d, 2 / 2))$ module has basis of the form $P^{r} Q^{s}$ with P^{r} as in (10) and $Q^{s}=Q_{1}^{s_{1}} Q_{2}^{s_{2}}$ where $s_{1}, s_{2} \in(0,1)$ and $s \in(0,1) \times(0,1)$. Let Γ be a representation of $\operatorname{osp}(d, 2 / 2)$. The carrier space consists of linear functions defined on $P^{r} Q^{s}$ and thus $V=\operatorname{Hom}_{U(i o s p(d, 2))}\left(\mathcal{P}^{\prime}, \mathbb{C}\right)$ where \mathcal{P}^{\prime} is spanned by real combinations of the basis elements $P^{r} Q^{s}$. The produced superalgebra representation is defined by

$$
\begin{align*}
\Phi(X) \phi\left(P^{r} Q^{s}\right) & =\phi\left(P^{r} Q^{s} X\right) \\
\phi\left(A P^{r} Q^{s}\right) & =\Gamma(A) \phi\left(P^{r} Q^{s}\right) \tag{14}
\end{align*}
$$

where $A \in U(\operatorname{osp}(d, 2 / 2)), X \in \operatorname{iosp}(d, 2 / 2)$ and $\phi \in V$. For the covariant scalar representation the $\operatorname{osp}(d, 2 / 2)$ is represented trivially and thus $\Gamma=0\left(=\Gamma^{\prime}\right.$ when restricted to $\left.s o(d, 2)\right)$. Note now that every $\phi \in V$, when defined on $\mathcal{P} \subset \mathcal{P}^{\prime}$, is a member of V_{0}, and via the equivalence mentioned above gives a member of V_{0}^{\prime}. Moreover, from the definition of produced superalgebra
representation, there is a one to one equivalence between a $\phi \in V$ and a set of four functions defined solely on P^{r}, namely $\phi\left(P^{r}\right),\left(\Phi\left(Q_{\alpha}\right) \phi\right),\left(\Phi\left(Q_{\alpha} Q_{\beta}\right) \phi\right)$. Thus, using this we regard an element of V as comprising the following set of four functions defined on $\operatorname{ISO}(d, 2) / S O(d, 2)$:

$$
\begin{equation*}
\phi(x), \quad\left(\Phi\left(Q_{\alpha}\right) \phi\right)(x)=\phi(x, \alpha), \quad\left(\Phi\left(Q_{1} Q_{2}\right) \phi\right)(x)=\phi(x, 12) . \tag{15}
\end{equation*}
$$

Finally, the action of the operators $\Phi(X)$ for every $X \in \operatorname{iosp}(d, 2 / 2)$ can be evaluated by calculating $\Phi(X)$ on these four functions, using the relations (14), (11), (7-8), the above realization of $\phi_{0}(x)$ and the commutation relations (2)(the dashes have been dropped out via the equivalence mentioned above). This action for the covariant $\operatorname{iosp}(d, 2 / 2)$ scalar multiplet is given by

$$
\begin{align*}
\Phi\left(J_{a b}\right) \phi(x)=\Phi_{0}\left(J_{a b}\right) \phi(x) & \Phi\left(P_{a}\right) \phi(x)=\Phi_{0}\left(P_{a}\right) \phi(x) \\
\Phi\left(J_{a b}\right) \phi(x, \alpha)=\Phi_{0}\left(J_{a b}\right) \phi(x, \alpha) & \Phi\left(P_{a}\right) \phi(x, \alpha)=\Phi_{0}\left(P_{a}\right) \phi(x, \alpha) \quad \alpha=1,2 \\
\Phi\left(J_{a b}\right) \phi(x, \alpha \beta)=\Phi_{0}\left(J_{a b}\right) \phi(x, \alpha \beta) & \Phi\left(P_{a}\right) \phi(x, \alpha \beta)=\Phi_{0}\left(P_{a}\right) \phi(x, \alpha \beta) \quad \alpha, \beta=1,2 \\
\Phi\left(K_{\alpha \beta}\right) \phi(x)=0 & \Phi\left(Q_{\alpha}\right) \phi(x)=\phi(x, \alpha) \\
\Phi\left(K_{\alpha \beta}\right) \phi(x, \gamma)=\epsilon_{\alpha \gamma} \phi(x, \beta)+\epsilon_{\beta \gamma} \phi(x, \alpha) & \Phi\left(Q_{\alpha}\right) \phi(x, \beta)=-\phi(x, \alpha \beta) \\
\Phi\left(K_{\alpha \beta}\right) \phi(x, \beta \gamma)=0 & \Phi\left(Q_{\alpha}\right) \phi(x, \beta \gamma)=0 \\
\Phi\left(L_{a \alpha}\right) \phi(x) & =g_{a b} x^{b} \phi(x, \alpha) \\
\Phi\left(L_{a \alpha}\right) \phi(x, \beta) & =-g_{a b} x^{b} \phi(x, \alpha \beta)-i \epsilon_{\alpha \beta} \Phi_{0}\left(P_{a}\right) \phi(x) \\
\Phi\left(L_{a \alpha}\right) \phi(x, \beta \gamma) & =-i \epsilon_{\beta \gamma} \Phi_{0}\left(P_{a}\right) \phi(x, \alpha) \tag{16}
\end{align*}
$$

An indefinite inner product is given by [22, 23]

$$
\begin{equation*}
(\phi, \psi)=\int d^{d+2} x \Omega^{\alpha \beta}\left[\phi^{*}(x, \alpha \beta) \psi(x)-\phi^{*}(x) \psi(x, \alpha \beta)-\phi^{*}(x, \alpha) \psi(x, \beta)+\phi^{*}(x, \beta) \psi(x, \alpha)\right] \tag{17}
\end{equation*}
$$

Under this inner product, for functions with appropriate boundary conditions, the iso($d, 2$) and $s p(2, \mathbb{R})$ generators are represented by Hermitian operators while the rest are antiHermitian.

Irreducibility of the covariant scalar multiplet demands that each of the Casimir operators has the same eigenvalue on all the four functions above. In particular we demand that

$$
\begin{align*}
C_{2} \phi(x) & =\Phi\left(P_{a} P^{a}\right) \phi(x)+\Phi\left(Q_{\alpha} Q^{\alpha}\right) \phi(x) \\
& =\Phi\left(P_{a} P^{a}\right) \phi(x)+2 i \phi(x, 12)=\lambda \phi(x), \\
C_{2} \phi(x, \alpha) & =\Phi\left(P_{a} P^{a}\right) \phi(x, \alpha)=\lambda \phi(x, \alpha), \\
C_{2} \phi(x, \alpha \beta) & =\Phi\left(P_{a} P^{a}\right) \phi(x, \alpha \beta)=\lambda \phi(x, \alpha \beta) . \tag{18}
\end{align*}
$$

where λ is the constant eigenvalue of C_{2} characterising the irreducible $\operatorname{iosp}(d, 2 / 2)$ multiplet. Finally we can introduce an (antiHermitian) ghost number operator given by

$$
\begin{equation*}
Q_{c}=i / 2\left(K_{11}-K_{22}\right) \tag{19}
\end{equation*}
$$

so that the functions of definite ghost number are: $\phi(x)$ and $\phi(x, 12)$ with ghost number 0 , and $\phi(x, 1) \pm \phi(x, 2)$ with ∓ 1, respectively.

3 BFV-BRST quantisation of the scalar relativistic particle

As is well known[26, 30] the BFV canonical quantisation of constrained Hamiltonian systems[11] uses an extended phase space description in which, to each first class constraint, a pair of conjugate 'ghost' variables (of Grassmann parity opposite to that of the constraint) is introduced. Here we follow this procedure for the scalar relativistic particle. Although our notation is adapted to the massive case, $m>0$, as would follow from the second order action corresponding to extremisation of the proper length of the particle world line, an analysis of the fundamental Hamiltonian description of the first order action[26] leads to an equivalent picture (with an additional mass parameter $\mu \neq 0$ supplanting m in appropriate equations, and permitting $m \rightarrow 0$ as a smooth limit). In either case, for the scalar particle the primary first class constraint is the mass-shell condition ($P^{2}-m^{2}$), where $P^{2}=P_{\mu} P^{\mu}$; including the corresponding Lagrange multiplier λ as an additional dynamical variable then leads to a secondary constraint, reflecting conservation of its conjugate momentum. The quantum formulation, to which we proceed directly, should be consistent with the equations of motion and gauge fixing at the classical level. We choose below to work in the class $[12,31] \dot{\lambda}=0$; moreover, with the restriction to orientation preserving diffeomorphisms (world-line reparametrizations), it is sufficient to choose $\lambda>0$ (a parallel treatment applies for $\lambda<0$). This restriction will also be essential in establishing the equivalence to the algebraic approach of the $\S 2$ above.

State space and wavefunctions.

The BFV extended phase space[26] for the BRST quantisation of the scalar relativistic particle is taken to comprise the following canonical variables:

$$
\begin{equation*}
x^{\mu}(\tau), p_{\mu}(\tau), \quad \omega(\tau), \pi(\tau), \quad \eta^{\alpha}(\tau), \rho_{\alpha}(\tau) \tag{20}
\end{equation*}
$$

where ω parametrizes the Lagrange multiplier $\lambda=e^{\omega}, \pi$ is the momentum conjugate to ω, and $\eta^{\alpha}, \rho_{\alpha}, \alpha=1,2$ are the Grassmann odd BFV extended phase space variables. The operators corresponding to the above set satisfy the following commutation relations ${ }^{\dagger}$:

$$
\begin{align*}
{\left[X_{\mu}, P_{\nu}\right] } & =-i g_{\mu \nu} \\
{[\hat{\omega}, \hat{\pi}] } & =i \\
{\left[\eta^{\alpha}, \rho_{\beta}\right] } & =-i \delta_{\beta}^{\alpha} \tag{21}
\end{align*}
$$

The ghost number operator Q_{c} is defined by

$$
\begin{equation*}
Q_{c}=(i / 2)\left(\eta^{\alpha} \rho_{\alpha}-\rho_{\alpha} \eta^{\alpha}\right) . \tag{22}
\end{equation*}
$$

The canonical BRST operator is given by

$$
\begin{equation*}
\Omega=\eta^{1} \hat{\pi}+\eta^{2}\left(P^{2}-m^{2}\right) ; \tag{23}
\end{equation*}
$$

[^1]we shall also use the corresponding anti-BRST operator
\[

$$
\begin{equation*}
\bar{\Omega}=\frac{i}{2}\left(\rho_{2} \hat{\pi}-\rho_{1}\left(P^{2}-m^{2}\right)\right) . \tag{24}
\end{equation*}
$$

\]

The gauge fixing operator[11] Ψ which will lead to the appropriate effective Hamiltonian is given by:

$$
\begin{align*}
\Psi & =-\frac{1}{2} \epsilon^{\hat{\omega}} \rho_{2}, \quad \text { and } \\
H & =i[\Psi, \Omega]=-\frac{1}{2}\left(\epsilon^{\hat{\omega}} \eta^{1} \rho_{2}+\epsilon^{\hat{\omega}}\left(P^{2}-m^{2}\right)\right) . \tag{25}
\end{align*}
$$

Consider the linear representation of the algebra of $(21 a),(21 b)$ on coordinate and momentum space:

$$
\begin{align*}
& X^{\mu}\left|x^{\mu}>=x^{\mu}\right| x^{\mu}>, \quad P_{\mu}\left|x^{\mu}>=-i \frac{\partial}{\partial x^{\mu}}\right| x^{\mu}> \\
& P_{\mu}\left|p_{\mu}>=p_{\mu}\right| p_{\mu}>, \quad X^{\mu}\left|p_{\mu}>=i \frac{\partial}{\partial p_{\mu}}\right| p_{\mu}>, \\
&<x^{\mu \prime} \mid x^{\mu}>=\delta\left(x^{\mu \prime}-x^{\mu}\right), \quad<p_{\mu}^{\prime} \mid p_{\mu}>=\delta\left(p_{\mu}^{\prime}-p_{\mu}\right), \\
&<x^{\mu} \mid p_{\mu}>=\frac{1}{(2 \pi)^{d / 2}} e^{-i x^{\mu} p_{\mu}} ; \\
& \hat{\omega}|\omega>=\omega| \omega>\quad, \quad \hat{\pi}\left|\omega>=i \frac{\partial}{\partial \omega}\right| \omega>, \\
& \hat{\pi}|\pi>=\pi| \pi>\quad, \quad \hat{\omega}\left|\pi>=-i \frac{\partial}{\partial \pi}\right| \pi>, \\
&<\omega^{\prime}\left|\omega>=\delta\left(\omega^{\prime}-\omega\right) \quad, \quad<\pi^{\prime}\right| \pi>=\delta\left(\pi^{\prime}-\pi\right), \\
&<\omega \mid \pi>=\frac{1}{(2 \pi)^{1 / 2}} e^{i \omega \pi} . \tag{26}
\end{align*}
$$

We also recognise (21c) as a b, c algebra [26], where b stands for $i \rho_{\alpha}$ and c for η^{α}. Then the algebra admits a representation on a four dimensional linear space with basis denoted by $| \pm \pm>,| \pm \mp>$, and the action of η^{α} and $i \rho_{\alpha}$, is given by

$$
\begin{align*}
\eta^{1}|-->=|+->, & & \eta^{1}|-+>=|++> \\
\eta^{2}|-->=|-+>, & & \eta^{2}|+->=-|++> \\
i \rho_{1}|+->=|-->, & & i \rho_{1}|++>=|-+> \\
i \rho_{2}|-+>=|-->, & & i \rho_{2}|++>=-|+-> \tag{27}
\end{align*}
$$

The non-zero inner products between these states are given by:

The above representations and inner products imply the Hermiticity conditions

$$
\begin{align*}
X_{\mu}^{\dagger}=X_{\mu}, \quad & P_{\mu}^{\dagger}=P_{\mu}, \quad \hat{\omega}^{\dagger}=\omega, \quad \hat{\pi}^{\dagger}=\pi \tag{29}\\
& \left(\eta^{\alpha}\right)^{\dagger}=\eta^{\alpha}, \quad\left(\rho_{\alpha}\right)^{\dagger}=-\left(\rho_{\alpha}\right) . \tag{30}
\end{align*}
$$

Finally, with the identity operator given by

$$
\begin{equation*}
I=\sum_{\sigma \sigma^{\prime}= \pm} \int_{\infty} d^{d} x d \omega(-i)(-1)^{\left(1-\sigma^{\prime}\right) / 2}\left|x^{\mu}, \omega, \sigma, \sigma^{\prime}><x^{\mu}, \omega,-\sigma,-\sigma^{\prime}\right| \tag{31}
\end{equation*}
$$

a general state $\mid \psi>$ of the system is

$$
\begin{align*}
\mid \psi> & =\sum_{\sigma \sigma^{\prime}= \pm} \int_{\infty} d^{d} x d \omega \mid x^{\mu}, \omega, \sigma, \sigma^{\prime}>\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, \omega, \tau\right), \quad \text { where } \\
\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, \omega, \tau\right) & =-i(-1)^{\left(1-\sigma^{\prime}\right) / 2}<x^{a}, \omega,-\sigma,-\sigma^{\prime} \mid \psi> \tag{32}
\end{align*}
$$

The inner product $\langle\phi \mid \psi\rangle$ in terms of wavefunctions is given by

$$
\begin{equation*}
<\phi \mid \psi>=(-i) \int_{\infty} d^{d} x d \omega(-1)^{\left(1-\sigma^{\prime}\right) / 2} \sum_{\sigma \sigma^{\prime}= \pm} \phi *_{\sigma \sigma^{\prime}}\left(x^{\mu}, \omega, \tau\right) \psi_{-\sigma-\sigma^{\prime}}\left(x^{\mu}, \omega, \tau\right) \tag{33}
\end{equation*}
$$

As usual the wave functions ψ are required to vanish at $\omega= \pm \infty$. With respect to the previously defined ghost number operator, (22), the kets $| \pm \pm>,| \pm \mp>$, and corresponding wavefunction components $\psi_{ \pm \pm}, \psi_{ \pm \mp}$, have eigenvalues $\pm 1,0$ respectively.

The gauge invariant physical states can now be identified[26] by imposing the Schrödinger equation $\left.i \frac{d}{d \tau}|\psi>=H| \psi>\equiv i[\Psi, \Omega] \right\rvert\, \psi>$ and computing the cohomology of the BRST operator Ω. However, in order to exhibit the $\operatorname{iosp}(d, 2 / 2)$ symmetry in the above quantization procedure at the level of state space, it is convenient to use equivalent BRST and gauge fixing operators $\Omega^{\prime}, \Psi^{\prime}$, which can be more directly expressed in terms of the superalgebra generators. The wavefunctions $\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, \omega, \tau\right)$ can then be readily identified with those of the functions of $\S 2$ above which carry the $\operatorname{iosp}(d, 2 / 2)$ produced representation (with appropriate boundary conditions). Our final identification of physical states will then follow with respect to the cohomology of the transformed BRST operator.

Consider the following canonical transformation on the classical dynamical variables of the extended phase space[14]:

$$
\begin{align*}
i \rho_{\alpha}^{\prime} & =e^{-\omega} i \rho_{\alpha} \\
\eta^{\prime \alpha} & =e^{\omega} \eta^{\alpha} \\
\hat{\pi}^{\prime} & =\hat{\pi}-\left(\eta^{2} \rho_{2}-\rho_{1} \eta^{1}\right) \tag{34}
\end{align*}
$$

with the remainder invariant. At the quantum level the corresponding BRST and anti-BRST operators $\Omega^{\prime}=\eta^{\prime 1} \hat{\pi}^{\prime}+\eta^{\prime 2}\left(P^{2}-m^{2}\right), \bar{\Omega}^{\prime}=\frac{i}{2}\left(\rho^{\prime}{ }_{2} \hat{\pi}^{\prime}-\rho^{\prime}{ }_{1}\left(P^{2}-m^{2}\right)\right.$) can be written as

$$
\begin{array}{r}
\Omega^{\prime}=\eta^{1}: e^{\hat{\omega}} \hat{\pi}:+e^{\hat{\omega}} \eta^{2}\left(P^{2}-m^{2}\right)-e^{\hat{\omega}} \eta^{2} \rho_{2} \eta^{1} \\
\bar{\Omega}^{\prime}=(i / 2)\left(\rho_{2}: e^{\hat{\omega}} \hat{\pi}:-e^{\hat{\omega}} \rho_{1}\left(P^{2}-m^{2}\right)+e^{\hat{\omega}} \rho_{1} \rho_{2} \eta^{1}\right), \tag{35}
\end{array}
$$

where the symmetric ordering

$$
\begin{equation*}
: e^{\hat{\omega}} \hat{\pi}:=(1 / 2)\left(e^{\hat{\omega}} \hat{\pi}+\hat{\pi} e^{\hat{\omega}}\right)=\hat{\pi} e^{\hat{\omega}}+(i / 2) e^{\hat{\omega}} \tag{36}
\end{equation*}
$$

has been introduced. It is also convenient to define[14] X_{α} and $Q_{\alpha}(\alpha=1,2)$ by

$$
\begin{align*}
Q_{1}=(i / 2 \sqrt{2})\left(2 \eta^{1}+i \rho_{2}\right) & , \quad Q_{2}=(i / 2 \sqrt{2})\left(2 \eta^{1}-i \rho_{2}\right) \\
X_{1}=(i / \sqrt{2})\left(i \rho_{1}-2 \eta^{2}\right) & , \quad X_{2}=(i / \sqrt{2})\left(-i \rho_{1}-2 \eta^{2}\right) \\
\text { where }\left[Q_{\alpha}, X_{\beta}\right] & =-i \epsilon_{\alpha \beta} . \tag{37}
\end{align*}
$$

In terms of these variables we attain the following simple forms for the BRST, gauge fixing and Hamiltonian operators:

$$
\begin{align*}
\Omega^{\prime} & =(-i / \sqrt{2})\left(: \hat{\pi} e^{\hat{\omega}}:\left(Q_{1}+Q_{2}\right)+\left(X_{1}+X_{2}\right) H\right), \\
\overline{\Omega^{\prime}} & =(-i / \sqrt{2})\left(: \hat{\pi} e^{\hat{\omega}}:\left(Q_{1}-Q_{2}\right)+\left(X_{1}-X_{2}\right) H\right), \\
\Psi^{\prime} & =-(1 / 2) \rho_{2}=(1 / \sqrt{2})\left(Q_{1}-Q_{2}\right), \\
H^{\prime} & =i\left[\Psi^{\prime}, \Omega^{\prime}\right]=-(1 / 2) e^{\hat{\omega}}\left(\left(P^{2}-m^{2}\right)+2 i Q_{1} Q_{2}\right) \equiv H . \tag{38}
\end{align*}
$$

Realisation of $\operatorname{iosp}(d, 2 / 2)$ superalgebra.

The realization of $\operatorname{iosp}(d, 2 / 2)$ provided by the extended BFV-BRST quantisation as described above is formulated in terms of the operators X^{μ}, P_{μ} together with Q_{α}, X_{α} and $X_{+}=\tau I$, $P_{-}=H, P_{+}=e^{-\hat{\omega}}, X_{-}=: \hat{\pi} e^{\hat{\omega}}:$. Given the commutation relations

$$
\begin{gathered}
{\left[X_{\mu}, P_{\nu}\right]=-i g_{\mu \nu}, \quad\left[X_{-}, P_{+}\right]=i,} \\
{\left[X_{\mu}, X_{ \pm}\right]=\left[X_{+}, P_{-}\right]=\left[X_{+}, P_{\mu}\right]=\left[X_{+}, P_{+}\right]=\left[X_{\mu}, P_{+}\right]=0,} \\
{\left[Q_{\alpha}, X_{ \pm}\right]=\left[X_{\alpha}, X_{ \pm}\right]=\left[X_{\alpha}, P_{+}\right]=\left[Q_{\alpha}, P_{ \pm}\right]=0,} \\
{\left[X_{-}, P_{-}\right]=-i P_{+}^{-1} P_{-}, \quad\left[X_{\alpha}, P_{-}\right]=i P_{+}^{-1} Q_{\alpha}, \quad\left[X_{\mu}, P_{-}\right]=i P_{+}^{-1} P_{\mu},}
\end{gathered}
$$

it can be checked that the following generators do indeed satisfy the commutation relations of $o s p(d, 2 / 2)$

$$
\begin{array}{rll}
J_{\mu \nu}=X_{\mu} P_{\nu}-X_{\nu} P_{\mu}, & J_{+-}=X_{-} P_{+}+X_{+} P_{-}, & J_{\mp \mu}=\mp X_{\mp} P_{\mu}-X_{\mu} P_{\mp}, \\
K_{\alpha \beta}=-i\left(X_{\alpha} Q_{\beta}+X_{\beta} Q_{\alpha}\right), & L_{\mu \alpha}=X_{\mu} Q_{\alpha}-X_{\alpha} P_{\mu}, & L_{\mp \alpha}=\mp X_{\mp} Q_{\alpha}-X_{\alpha} P_{\mp}, \tag{39}
\end{array}
$$

where $L_{-1}=-i / \sqrt{2}\left(\Omega^{\prime}+\bar{\Omega}^{\prime}\right), L_{-2}=-i / \sqrt{2}\left(\Omega^{\prime}-\overline{\Omega^{\prime}}\right)$. Together with $P_{\mu}, P_{ \pm}, Q_{\alpha}$, these generators close ${ }^{\ddagger}$ on the inhomogeneous form $\operatorname{iosp}(d, 2 / 2)$ (see (2) above). It is clear that the $d+2$-dimensional coordinates $x_{\mu}, x_{ \pm}, x_{\alpha}$ and momenta $P_{\mu}, P_{\mp}, Q_{\alpha}$ are not all canonically conjugate. In particular X_{+}, proportional to the identity operator, simply re-scales kets (at time τ) by τ, while P_{-}is identified with the Hamiltonian, a function of the other variables (whose action also sets the rate of time development of kets via the Schrödinger equation).

The final stage in the analysis is the identification of the (τ-dependent) wavefunctions $\psi_{\sigma \sigma^{\prime}}$ with the functions over x^{a} which carry the produced representation in $\S 2$ above. To facilitate this comparison we introduce kets and wavefunctions dependent on $p_{+}=e^{-\omega}$ by a change of variables. As $e^{-\omega}$ is a monotonic differentiable function, $\left|x^{\mu}, p_{+}, \sigma, \sigma^{\prime}\right\rangle$ can be defined by

$$
\begin{align*}
\left|x^{\mu}, \omega, \sigma, \sigma^{\prime}\right\rangle & =p_{+}^{1 / 2}\left|x^{\mu}, p_{+}, \sigma, \sigma^{\prime}\right\rangle, \quad \text { and where } \\
\left\langle p_{+} \mid p_{+}^{\prime}\right\rangle & =\delta\left(p_{+}-p_{+}^{\prime}\right) . \tag{40}
\end{align*}
$$

Then the completeness relation becomes

$$
\begin{equation*}
I=\sum_{\sigma \sigma^{\prime}= \pm} \int d^{d} x \int_{0}^{\infty} d p_{+}(-i)(-1)^{\left(1-\sigma^{\prime}\right) / 2}\left|x^{\mu}, p_{+}, \sigma, \sigma^{\prime}><x^{\mu}, p_{+},-\sigma,-\sigma^{\prime}\right| \tag{41}
\end{equation*}
$$

[^2]while
\[

$$
\begin{align*}
\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right) & =-i(-1)^{\left(1-\sigma^{\prime}\right) / 2}<x^{\mu}, p_{+},-\sigma,-\sigma^{\prime} \mid \psi(\tau)> \\
& =-i(-1)^{\left(1-\sigma^{\prime}\right) / 2} e^{\omega / 2} \psi_{\sigma \sigma^{\prime}}\left(x^{a}, \omega, \tau\right) \tag{42}
\end{align*}
$$
\]

It should be noted that the domain of p_{+}is restricted to be $p_{+} \in(0, \infty)$ as $\omega \in(-\infty, \infty)$ and this will result in wave functions $\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right)$ which vanish when p_{+}approaches zero or infinity. In the p_{+}representation the operator X_{-}is realized ${ }^{\delta}$ as $i \partial / \partial p_{+}$, while the inner product becomes

$$
\begin{equation*}
<\phi|\psi\rangle=-i \int d^{d} x \int_{0}^{\infty} d p_{+} \sum_{\sigma \sigma^{\prime}= \pm}(-1)^{\left(1+\sigma^{\prime}\right) / 2} \phi *_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right) \psi_{-\sigma-\sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right) . \tag{43}
\end{equation*}
$$

The action of the operators (39) on the wavefunctions $\psi_{\sigma \sigma^{\prime}}\left(x^{a}, p_{+}, \tau\right)$ is given in the Appendix together with the Schrödinger equation for them ((see (A.1-A.5)). It can be easily seen that with the identifications

$$
\begin{array}{r}
\phi\left(x^{a}, p_{+}, x_{+}\right)=\psi_{+-} \\
\phi\left(x^{a}, p_{+}, x_{+}, 1\right)=(i / \sqrt{2})\left(\psi_{--}-(1 / 2) \psi_{++}\right) \\
\phi\left(x^{a}, p_{+}, x_{+}, 2\right)=(i / \sqrt{2})\left(\psi_{--}+(1 / 2) \psi_{++}\right) \\
\phi\left(x^{a}, p_{+}, x_{+}, 12\right)=(1 / 2) \psi_{-+} \tag{44}
\end{array}
$$

the representation obtained in the Appendix (see (A.1))is identical with the one constructed in the produced representation in $\S 2$ above, provided that the Fourier transforms of the functions on x_{-}have support on $p_{+} \in(0, \infty)$ in conformity with the present construction.

Having established for this model the equivalence of the physical quantisation construction with the algebraic produced representation, we can now proceed to identify physical states (in either picture) by computing the BRST cohomology. The BRST-invariant states are defined by the condition $\Omega^{\prime} \mid \phi>=0$, with general solution $|\phi\rangle=|\psi\rangle+\Omega^{\prime} \mid \chi>$ and $\mid \psi>$ not in the range of Ω^{\prime}. Then using the information of the Appendix, the above condition gives the following restrictions for the wave functions $\psi_{\sigma \sigma^{\prime}}\left(x^{a}, p_{+}, \tau\right)$:

$$
\begin{align*}
i \frac{d}{d p_{+}} \psi_{--} & =0 \\
H \psi_{--}=i \frac{d}{d \tau} \psi_{--} & =0 \\
\left(i \frac{d}{d p_{+}}\right)(1 / 2) \psi_{-+}+i \frac{d}{d \tau} \psi_{+-} & =0 \tag{45}
\end{align*}
$$

where the Schrödinger equation has been used for the last two expressions. At the algebraic level the above restrictions arise by demanding the vanishing of $\left(L_{-1}+L_{-2}\right) \psi_{+-},\left(L_{-1}+L_{-2}\right) \psi_{-+}$, and $\left(L_{-1}+L_{-2}\right) \psi_{++}$, leading to ($45 a-45 c$), respectively, while the condition $\left(L_{-1}+L_{-2}\right) \psi_{--}=0$ is identically satisfied. Thus the wavefunction ψ_{--}of ghost number -1 is BRST-invariant, by ($45 a, 45 b$) is independent of $\tau=x_{+}$and p_{+}, and by (45b) and (A.5) satisfies the Klein-Gordon

[^3]equation. In conclusion, we see ψ_{--}and any BRST-equivalent states of ghost number -1 are in direct correspondence with the physical states.

These results have equivalents at the level of the produced algebra representation via (44). The BRST invariance conditions become conditions for the vanishing of ($L_{-1}+L_{-2}$). Transforming from x_{-}to p_{+}, and using the irreduciblity requirement for the multiplet (with $\lambda=m^{2}$ in (18)), we see that the vanishing of ($L_{-1}+L_{-2}$) on $\phi(x)$ will lead to (45a), on $\phi(x, \alpha)$ will both lead to $(45 c)$, and on $\phi(x, 12)$ will lead to ($45 b$). Again, the physical states are identified with $(-i / 2) \sqrt{2}\left(\phi\left(x^{\mu}, 0,0,1\right)+\phi\left(x^{\mu}, 0,0,2\right)\right)$. Finally note that the requirement that the $\operatorname{iosp}(d, 2 / 2)$ states should satisfy the Schrödinger equation is identical with the demand that the covariant massive scalar $\operatorname{iosp}(d, 2 / 2)$ multiplet should be irreducible. That is, relation (18) should be satisfied, and we easily see that the effective Hamiltonian should have the form $P_{-}=H=-(1 / 2) P_{+}^{-1}\left(P_{\mu} P^{\mu}-m^{2}+Q_{\alpha} Q^{\alpha}\right)$.

4 Conclusions

In this paper we have considered in detail the canonical BFV-BRST quantisation of the scalar relativistic particle and its relationship to the extended quantisation supersymmetry superalgebra $\operatorname{iosp}(d, 2 / 2)$. In particular, a certain type of covariant scalar produced module of the latter is identified with the extended state space of the particle quantisation in the usual wavefunction and b, c algebra constructions.

Features of our approach have been the consistent treatment of the quantisation problem for the Lagrange multiplier on the half-line ($p_{+} \equiv \lambda^{-1}>0$ in our notation) which is necessary for the identification of the $\operatorname{iosp}(d, 2 / 2)$ covariance (see comments below). Although the emergence of the extended $\operatorname{iosp}(d, 2 / 2)$ algebra may seem fortuitous in this particle quantisation example (§3), the equivalence with the canonical produced algebra construction (§2) suggests that the phenomenon is quite universal. Thus it might be expected that the BFV-BRST quantisation using a broad class of gauge fixing fermions corresponding to admissible gauge fixings (see below) of the general type[26] $\dot{\lambda}=F(\lambda)$ would also admit the extended supersymmetry. With regard to the identification with the produced representation, it must be noted that the natural inner product ($\S 2$) is supplanted by a pointwise inner product ($\S 3$) which in principle is proper-time dependent. Of course, for states obeying Schrödinger's equation, this inner product is necessarily proper time independent.

The iosp($d, 2 / 2$) representation ($\S 3$) has been explicitly shown to be built in terms of only $d+$ 1 canonically conjugate pairs of bosonic variables (together with the extended fermionic modes), with one momentum component, p_{-}, identified with the Hamiltonian H, and its 'conjugate' variable x_{+}set equal to the proper time τ. At the ($d, 2 / 2$)-dimensional level the realisation is analogous to a reduced phase space or Hamiltonian reduction approach, with constraints solved explicitly in terms of an independent set of variables; related constructions have also been proposed abstractly for 'covariant' quantisation algebras[16].

In the present work no direct appeal is made to superfield constructions. Although in this case the representation found can in fact be shown to be identical to a superfield version[15], our approach is more general and is still possible for cases where superfield considerations are inappropriate or not available. Indeed, the general theory of produced representations as ex-
emplified here, provides $[22,23]$ a formal link between abstract representation theory and more heuristic superfield methods.

Since the $\operatorname{iosp}(d, 2 / 2)$ covariance is established at the level of the state space, we have not entered into considerations of the path integral representation of the canonical action and generating function $[13,14]$. Nevertheless, for the present case the evolution kernel can in principle be evaluated directly. The derived causal scalar particle Green's function would then establish the connection with the second-quantised theory. The choice $p_{+} \equiv \lambda^{-1}>0$ corresponds, with the gauge class used, to an admissible section[26] of the space of gauge orbits, including the global modular transformation (in this case an orientation-reversing diffeomorphism, which together with the identity forms a \mathbb{Z}_{2} group). The quantisation is thus carried out for the unoriented scalar particle; the opposite sign would correspond to the unoriented scalar antiparticle[26], and indeed the usual extension whereby $\phi\left(-p_{+}\right) \sim \phi^{*}\left(p_{+}\right)$is consistent with this PCT transformation[32].

It is a striking fact that both for the massless and massive particle, the extended quantisation symmetry involves massless representations at the $(d, 2 / 2)$ level, since the identification of the (inverse) Lagrange multiplier with p_{+}, and of the Hamiltonian with p_{-}is perfect for the interpretation (on physical states) of the Schrödinger equation $H=-(1 / 2) p_{+}^{-1}\left(p_{\mu} p^{\mu}+Q_{\alpha} Q^{\alpha}-m^{2}\right)$ as the vanishing of the quadratic Casimir, in light-cone coordinates for the 2 extra bosonic directions. The 'dimensional reduction' from $(d, 2 / 2)$ to d dimensions appears here in the analysis of physical states directly via the wavefunctions' independence of $x_{ \pm}$, rather than through a Parisi-Sourlas[4] cancellation mechanism, although this has been established abstractly for Greens functions in the case of irreducible induced representations of $\operatorname{iosp}(d, 2 / 2)$ by Cornwell and Hartley[22, 23]. Similar reductions have been discussed in the context of loop integrals in quantum field theory[33, 34, 10].

Future work[3] in the programme initiated here will extend the algebraic analysis to other first quantised systems such as the spinning particle and superparticle, as well as to gauge field theories such as Yang-Mills-Shaw. General questions will be to confirm the covariance of the canonical approach and ghost systems[35] with respect to an extended orthosymplectic spacetime symmetry, particularly with regard to issues of modular invariance and the relation of Teichmüller space to the appropriate induced or produced representation theory. At this level should also emerge the reasons for the use in the literature of $(d / 2)$ - as opposed to ($d, 2 / 2$)-dimensional superfield formalisms for covariant quantisation and discussions of renormalisation[8, 9], and the connection with geometrical approaches based on coset space dimensional reduction[36]. Finally, the algebraic structure of quantisation using BRST symmetry is extremely rich and flexible, as has been demonstrated by investigations of alternative schemes in the context of internal symmetry[37] and of cohomological approaches[38]. It can be expected that the study of extended quantisation symmetries along the lines advocated here may lead to consistent ways of implementing covariant quantisation in systems such as string field theories where the gauge algebra presents technical difficulties. In any case, it is reasonable to assert that a 'Wigner' type classification of admissible 'gauge multiplets' may evolve from this viewpoint.

Acknowledgements

The authors are grateful to A. J. Bracken, R. Delbourgo, D. Kreimer, D. McAnally and J. Govaerts for helpful hints and comments which facilitated the development of the present work.

This work was supported under grant A69332249 from the Australian Research Council.

Appendix

The action of the transformed operators $X_{\alpha}, Q_{\alpha}, \hat{\pi}$ on the fundamental kets $\mid x^{\mu}, p_{+}, \sigma \sigma^{\prime}>$ is given by

$$
\begin{align*}
X_{\alpha} \mid x^{\mu}, p_{+},--> & =2(-1)^{\alpha} X_{\alpha}\left|x^{\mu}, p_{+},++>=-2(i / \sqrt{2})\right| x^{\mu}, p_{+},-+> \\
X_{\alpha} \mid x^{\mu}, p_{+},+-> & =(i / \sqrt{2})\left((-1)^{\alpha-1}\left|x^{\mu}, p_{+},-->+2\right| x^{\mu}, p_{+},++>\right) \\
Q_{\alpha} \mid x^{\mu}, p_{+},--> & =2(-1)^{\alpha} Q_{\alpha}\left|x^{\mu}, p_{+},++>=i / 2 \sqrt{2}\right| x^{\mu}, p_{+},+-> \\
Q_{\alpha} \mid x^{\mu}, p_{+},-+> & =(i / 2 \sqrt{2})\left(2\left|x^{\mu}, p_{+},++>+(-1)^{\alpha-1}\right| x^{\mu}, p_{+},-->\right) \\
Q_{1} Q_{2} \mid x^{\mu}, p_{+},-+> & =(1 / 2) \mid x^{\mu}, p_{+},+-> \\
\hat{\pi} \mid x^{\mu}, p_{+}, \sigma \sigma^{\prime}> & \left.=-\left(i p_{+} \frac{d}{d p_{+}}+(i / 2)\right) \right\rvert\, x^{\mu}, p_{+} \sigma \sigma^{\prime}> \\
X_{-} \mid x^{\mu}, p_{+}, \sigma \sigma^{\prime}> & \left.=-i \frac{d}{d p_{+}} \right\rvert\, x^{\mu}, p_{+}, \sigma \sigma^{\prime}> \tag{A.1}
\end{align*}
$$

The action of any element A, of $\operatorname{iosp}(d, 2 / 2)$ or of an operator corresponding to phase space variables, on the functions $\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right)$ is given by

$$
\begin{equation*}
A \psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right)=-i(-1)^{\left(1-\sigma^{\prime}\right) / 2}<x^{\mu}, p_{+},-\sigma,-\sigma^{\prime}|A| \psi> \tag{A.2}
\end{equation*}
$$

We can now calculate the action of the operators (39) on $\psi_{\sigma \sigma^{\prime}}\left(x^{\mu}, p_{+}, \tau\right)$ using (A.1-A.2):

$$
\begin{array}{r}
J_{\mu \nu} \psi_{\sigma \sigma^{\prime}}=i\left(x_{\mu} \frac{d}{d x^{\nu}}-x_{\nu} \frac{d}{d x^{\mu}}\right) \psi_{\sigma \sigma^{\prime}}, \quad P_{a} \psi_{\sigma \sigma^{\prime}}=i \frac{d}{d x^{a}} \psi_{\sigma \sigma^{\prime}} \\
K_{11} \psi_{--}=(1 / 2) K_{11} \psi_{++}=i \psi_{--}-(i / 2) \psi_{++} \\
K_{22} \psi_{--}=(-1 / 2) K_{22} \psi_{++}=-i \psi_{--}-(i / 2) \psi_{++} \\
K_{12} \psi_{--}=(i / 2) \psi_{++}, \quad K_{12} \psi_{++}=2 i \psi_{--} \\
K_{\alpha \beta} \psi_{ \pm \mp}=0 \\
Q_{\alpha} \psi_{+-}=(-1)^{\alpha} \frac{i}{2 \sqrt{2}} \psi_{++}+\frac{i}{\sqrt{2}} \psi_{--} \\
Q_{1} \psi_{-+}=Q_{2} \psi_{-+}=Q_{1} Q_{2} \psi_{--}=Q_{1} Q_{2} \psi_{++}=Q_{1} Q_{2} \psi_{-+}=0 \\
Q_{\alpha} \psi_{++}=2(-1)^{\alpha-1} Q_{\alpha} \psi_{--}=\frac{i}{\sqrt{2}} \psi_{-+} \\
Q_{1} Q_{2} \psi_{+-}=(1 / 2) \psi_{-+} \\
L_{-1} \psi_{+-}=-i \frac{d}{d p_{+}}\left(Q_{1} \psi_{+-}\right), \quad L_{-2} \psi_{+-}=-i \frac{d}{d p_{+}}\left(Q_{2} \psi_{+-}\right) \\
L_{-1} \psi_{--}=-L_{-2} \psi_{--}=\left(\frac{-i}{2 \sqrt{2}}\right) i \frac{d}{d p_{+}} \psi_{-+}-\frac{i}{\sqrt{2}} H \psi_{+-} \\
\left.L_{-1} \psi_{++}=L_{-2} \psi_{++}=\left(\frac{-i}{\sqrt{2}}\right) i \frac{d}{d p_{+}} \psi_{-+}-2 \frac{i}{\sqrt{2}} H \psi_{+-} \psi_{+-}\right), \quad L_{-2} \psi_{-+}=2 H\left(Q_{2} \psi_{+-}\right)
\end{array}
$$

$$
\begin{align*}
L_{\mu \alpha} \psi_{\sigma \sigma^{\prime}} & =-x_{\mu} Q_{\alpha} \psi_{\sigma \sigma^{\prime}}+i \frac{d}{d x^{\mu}} X_{\alpha} \psi_{\sigma \sigma^{\prime}} \\
J_{-\mu} \psi_{\sigma \sigma^{\prime}} & =i \frac{d}{d x^{\mu}}\left(i \frac{d}{d p_{+}}\right) \psi_{\sigma \sigma^{\prime}}+x_{\mu} H \psi_{\sigma \sigma^{\prime}}, \\
J_{+-} \psi_{\sigma \sigma^{\prime}} & =x_{+} H \psi_{\sigma \sigma^{\prime}}+i \frac{d}{d p_{+}}\left(p_{+} \psi_{\sigma \sigma^{\prime}}^{\prime}\right) \tag{A.3}
\end{align*}
$$

From the Schrödinger equation

$$
\begin{equation*}
i \frac{d}{d \tau}\left|\psi_{\sigma \sigma^{\prime}}\right\rangle=H\left|\psi_{\sigma \sigma^{\prime}}\right\rangle \tag{A.4}
\end{equation*}
$$

and (A.1-A.2) we also have

$$
\begin{array}{r}
i \frac{d}{d \tau} \psi_{--}=H \psi_{--}=-\frac{1}{2} p_{+}^{-1}\left(P^{2}-m^{2}\right) \psi_{--} \\
i \frac{d}{d \tau} \psi_{++}=H \psi_{++}=-\frac{1}{2} p_{+}^{-1}\left(P^{2}-m^{2}\right) \psi_{++} \\
i \frac{d}{d \tau} \psi_{+-}=H \psi_{+-}=-\frac{1}{2} p_{+}^{-1}\left(P^{2}-m^{2}\right) \psi_{+-}+i p_{+}^{-1} Q_{1} Q_{2} \psi_{+-} \\
i \frac{d}{d \tau} \psi_{-+}=H \psi_{-+}=-\frac{1}{2} p_{+}^{-1}\left(P^{2}-m^{2}\right) \psi_{-+} \tag{A.5}
\end{array}
$$

References

[1] Dirac P A M 1964 Lectures on Quantum Mechanics(Belfer Graduate School of Science Yeshiva University New York); 1966 Lectures on Quantum Field Theory (Belfer Graduate School of Science Yeshiva University New York)
[2] Becchi C, Rouet A and Stora R 1974 Phys LettB52 344; 1976 Ann Phys 98 287; Tyutin I V 1975 Lebedev preprint FIAN 39 unpublished
[3] I Tsohantjis and P D Jarvis, in preparation
[4] Parisi G and Sourlas N 1979 Phys Rev Lett 43744
[5] Dondi P H and Jarvis P D, Phys Lett 84B (1979) 75; Erratum 87B (1979) 403
[6] Ojima I 1980 Prog Theor Phys 64625
[7] Bonora L and Tonin M 1981 Phys Lett 98B 48
[8] Delbourgo R and Jarvis P D 1982 J Phys A: Math Gen 15 611; Delbourgo R, Thompson G and Jarvis P D Phys Rev D28 2122
[9] Joglekar S D 1991 Phys Rev D43 1307
[10] Ishizuka W and Kikuchi Y, Phys Lett 171B 408
[11] Fradkin E S, Vilkovisky G A 1975 Phys Lett 55B 224; Batalin J A and Vilkovisky G A 1977 Phys Lett69B 309; Fradkin F S and Fradkina T E 1978 Phys Lett 72B 343
[12] Monaghan S 1986 Phys Lett 178B 231
[13] Neveu A and West P C 1986 Phys Lett 182B 343
[14] Casalbuoni R 1987 Talk given at the XII Edicion de los Encuentros Relativistas-La Laguna Espana
[15] Barducci A, Casalbuoni R, Dominici D and Gatto R 1987 Phys Lett 187B 135-40; 1987 Phys Lett194B 257
[16] Siegel W and Zwiebach B 1987 Nucl. Phys. 282B 125
[17] Bars I and Kallosh R E 1989 Phys. Lett. 233B 117
[18] Hull C M, Spence W J, Vazquez-Bello J L, 1991 Nucl. Phys. 348B 108
[19] Gunaydin M, Nilsson B E W, Sierra G and Townsend P K 1986 Phys. Lett. 176B 45
[20] Aratyn H, Ingermanson R and Niemi A J 1987 Phys Lett189B 427; Niemi A J 1987 Lie algebra cohomology and the $O s p(1,1 / 2)$ structure string theory (UCB-PTH-87/29)
[21] van Holten J W 1989 Phys Lett B216 133
[22] Hartley D H 1988 Ph D Thesis St Andrews University
[23] Hartley D H and Cornwell J F 1988 J Phys A: Math Gen 213171
[24] Cornwell J F 1989 Group Theory in Physics Vol. III Supersymmetries and Infinite Dimensional Algebras (Academic Press)
[25] Parker M 1980 J. Math. Phys. 21689
[26] Govaerts J 1991 Hamiltonian Quantisation and Constrained Dynamics, Leuven Notes in Mathematical and Theoretical Physics 4 (Leuven University Press)
[27] Govaerts J 1989 Int. J. Mod. Phys. A4 173
[28] Govaerts J 1989 Int. J. Mod. Phys. A4 4487
[29] Blattner R J 1969 Trans Am Math Soc 144457
[30] Henneaux M 1986 Phys. Lett. 177B 35
[31] Henneaux M Teitelboim C 1982 Ann. Phys. 143 127; Teitelboim C 1982 Phys. Rev. D25 3159
[32] Bardakci K and Halpern M B 1968 Phys Rev 1761686
[33] McClain B, Niemi A J, Taylor C and Wijewardhana 1983 Nucl Phys B217 430;
[34] Ricotta Regina Maria 1989 Negative Dimensions in Quantum Field Theory Sao Paulo IFT/P-33/89
[35] Kugo T and Ojima I 1979 Supp Progr Theor Phys 661
[36] Jarvis P D 1990 J Math Phys 311783
[37] Bowick M J and Gürsey F, 1986 Phys Lett 175B 182
[38] van Holten J W 1990 Nucl Phys B339 158

[^0]: *Writing the basis elements which are linearly independent over \mathbb{R}, and thus form the real $\operatorname{iosp}(d, 2 / 2)$, as $M_{a b}=i J_{a b}, M_{\alpha \beta}=i K_{\alpha \beta}, M_{a \beta}=e^{i \pi / 4} L_{a \beta}, R_{a}=i \zeta P_{a}, R_{\alpha}=e^{i \pi / 4} \zeta Q_{\alpha}$, the commutation relations read $\left[M_{A B}, M_{C D}\right]=C_{A B, C D}^{E F} M_{E F},\left[M_{A B}, R_{C}\right]=C_{A B, C}^{D} R_{D}, \zeta$ being an arbitrary non zero real constant, with capital Latin indices in the range $0,1, \ldots, d+4, g_{(\alpha+d+2)(\beta+d+2)}=\epsilon_{\alpha \beta}$, and where the structure constants are built covariantly from $g_{A B}$ and δ_{A}^{B} with appropriate symmetry and grading factors. Similarly the Pauli-Loubanski operator can be written covariantly as $W_{A B C}=M_{A B} R_{C}+\cdots$

[^1]: ${ }^{\dagger}$ The choice of ω and π as conjugate variables corresponds to a choice of a particular inner product, and hence Hermitian canonical conjugate to λ, for the direct problem of quantisation on the half-line $\lambda>0$. The ultimate determinant of these choices is the identification with the produced representation of $\S 2$ above (see below).

[^2]: ${ }^{\ddagger}$ In covariant notation (see footnote to (2)) this realization can be written simply in terms of $X_{A} R_{B}-$ $(-1)^{|A B|} X_{B} R_{A}$ and R_{A}. However, as noted above, the X_{A} and R_{B} are not canonically conjugate.

[^3]: ${ }^{\S}$ The wavefunctions in the x_{-}representation are given by $\psi_{\sigma \sigma^{\prime}}\left(x^{a}, x_{-}, x_{+}\right)=\int d p_{+} e^{-i x_{-} p_{+}} \psi_{\sigma \sigma^{\prime}}\left(x^{a}, p_{+}, x_{+}\right)$.

