6,505 research outputs found
Apraxia and Alzheimer’s Disease: Review and Perspectives
Apraxia is one of the cognitive deficits that characterizes Alzheimer\u27s disease. Despite its prevalence and relevance to diagnosing Alzheimer\u27s disease, this topic has received little attention and is without comprehensive review. The review herein is aimed to fill this gap by first presenting an overview of the impairment caused in different clinical situations: pantomime of tool use, single tool use, real tool use, mechanical problem solving, function and manipulation knowledge tasks, and symbolic/meaningless gestures. On the basis of these results, we then propose alternative interpretations regarding the nature of the underlying mechanisms impaired by the disease. Also presented are principal methodological issues precluding firm conclusions from being drawn
Evaluation of a Tetracycline-Inducible Promoter in Staphylococcus aureus In Vitro and In Vivo and Its Application in Demonstrating the Role of sigB in Microcolony Formation
An inducible promoter system provides a powerful tool for studying the genetic basis for virulence. A variety of inducible systems have been used in other organisms, including pXyl-xylR-inducible promoter, the pSpac-lacI system, and the arabinose-inducible PBAD promoter, but each of these systems has limitations in its application to Staphylococcus aureus. In this study, we demonstrated the efficacy of a tetracycline-inducible promoter system in inducing gene expression in S. aureus in vitro and inside epithelial cells as well as in an animal model of infection. Using the xyl/tetO promoter::gfpuvr fusion carried on a shuttle plasmid, we demonstrated that dose-dependant tetracycline induction, as measured by bacterial fluorescence, occurred in each of the above environments while basal activation under noninduced conditions remained low. To ascertain how the system can be used to elucidate the genetic basis of a pathogenic phenotype, we cloned the sigB gene downstream of the inducible promoter. Induction of SigB expression led to dose-dependent attachment of the tested strain to polystyrene microtiter wells. Additionally, bacterial microcolony formation, an event preceding mature biofilm formation, also increased with tetracycline induction of SigB
Spin dependence of the masses of heavy baryons
It is argued from the systematics of spin-depen\-dent forces between quarks
that two proposed baryon states, named and ,
do not exist.Comment: 6 pages, plainte
Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation
Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT
(CBCT) scans has become a serious concern. Patient-specific imaging dose
calculation has been proposed for the purpose of dose management. While Monte
Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers
from low computational efficiency. In response to this problem, we have
successfully developed a MC dose calculation package, gCTD, on GPU architecture
under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray
imaging dose received by a patient during a CT or CBCT scan. Techniques have
been developed particularly for the GPU architecture to achieve high
computational efficiency. Dose calculations using CBCT scanning geometry in a
homogeneous water phantom and a heterogeneous Zubal head phantom have shown
good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In
terms of improved efficiency, it is found that gCTD attains a speed-up of ~400
times in the homogeneous water phantom and ~76.6 times in the Zubal phantom
compared to EGSnrc. As for absolute computation time, imaging dose calculation
for the Zubal phantom can be accomplished in ~17 sec with the average relative
standard deviation of 0.4%. Though our gCTD code has been developed and tested
in the context of CBCT scans, with simple modification of geometry it can be
used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
Three distinct recovery patterns following primary total knee arthroplasty: dutch arthroplasty register study of 809 patients
Purpose: Total knee arthroplasty (TKA) is usually effective, although not all patients have satisfactory outcomes. This assumes distinct recovery patterns might exist. Little attention has been paid to determine which patients have worse outcomes. This study attempts to distinguish specific recovery patterns using the Oxford knee score (OKS) during the first postoperative year. The secondary aim was to explore predictors of less favourable recovery patterns. Methods: Analysis of patients in the Dutch Arthroplasty Register (LROI) with unilateral primary TKA. Data collected up to one year postoperative was used. To identify subgroups of patients based on OKS, latent class growth modeling (LCGM) was used. Moreover, multivariable multinomial logistic regression analysis was used to explore predictors of class membership. Results: 809 Patients completed three OKS during the first year postoperative and were included. LCGM identified 3 groups of patients; ‘high risers’ (most improvement during first 6-months, good 12-month scores 77%), ‘gradual progressors’ (continuous improvement during the first year 13%) and ‘non responders’ (initial improvement and subsequent deterioration to baseline score 10%). Predictors of least favourable class membership (OR, 95%CI) are EQ-5D items: VAS health score (0.83, 0.73–0.95), selfcare (2.22, 1.09–4.54) and anxiety/depression (2.45, 1.33–4.52). Conclusion: Three recovery patterns after TKA were distinguished; ‘high risers', ‘gradual progressors' and ‘non responders'. Worse score on EQ-5D items VAS health, selfcare, and anxiety/depression were correlated with the least favourable ‘non r
Recommended from our members
Tritium and noble-gas fission products in the nuclear fuel cycle. I. Reactors
Apraxie et maladie d’Alzheimer : revue et perspectives
Alzheimer’s disease is characterized by the progressive impairment of cognitive functions. Whereas the study of amnesia, aphasia, agnosia and dysexecutive impairments to a lesser extent has been well documented, apraxia has received little attention [1]. The aim of this review is to fill this gap by presenting an overview of the praxis impairment, which typically appears in the course of the disease. This review focuses on transitive gestures (i.e., tool use tasks) and intransitive gestures (i.e., symbolic and meaningless). On the basis of these results, we propose interpretations as to the nature of the underlying mechanisms impaired by the disease. Finally, we provide some answers to help clinicians to better understand and assess the apraxic disorders in Alzheimer’s disease
Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode
All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO2 (LCO) thin films deposited on cubic Al-doped Li7La3Zr2O12 (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and energy-dispersive X-ray spectroscopy (EDS) data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300°C. La2Zr2O7 and Li2CO3 were identified as decomposition products after annealing at 500°C by synchrotron X-ray diffraction (XRD). X-ray absorption spectroscopy (XAS) results indicate the presence of also LaCoO3, in addition to La2Zr2O7 and Li2CO3. Based on electrochemical impedance spectroscopy, and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO|LLZO|LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500°C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO2-free environments are desirable for obtaining ceramic cathode-electrolyte interfaces that enable fast Li transfer and high capacity
Recommended from our members
Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting
Acoustic streaming and its attendant effects in the sump of a direct-chill (DC) casting process are successfully predicted under ultrasonic treatment for the first time. The proposed numerical model couples acoustic cavitation, fluid flow, heat and species transfer, and solidification to predict the flow pattern, acoustic pressure, and temperature fields in the sump. The model is numerically stable with time steps of the order of 0.01 s and therefore computationally attractive for optimization studies necessitating simulation times of the order of a minute. The sump profile is altered by acoustic streaming, with the slurry region depressed along the centreline of the billet by a strong central jet. The temperature gradient in the transition zone is increased, potentially interfering with grain refinement. The cooling rate in the sump is also altered, thereby modifying the dendrite arm spacing of the as-cast billet. The relative position of the sonotrode affects the sump profile, with the sump depth decreased by around 5 mm when the sonotrode is moved above the graphite ring level by 100 mm. The acoustic streaming jet penetrates into the slurry zone and, as a result, the growth direction of dendritic grains in the off-centre position is altered
- …