437 research outputs found

    Existence of Fermion Zero Modes and Deconfinement of Spinons in Quantum Antiferromagnetism resulting from Algebraic Spin Liquid

    Full text link
    We investigate the quantum antiferromagnetism arising from algebraic spin liquid via spontaneous chiral symmetry breaking. We claim that in the antiferromagnet massive Dirac spinons can appear to make broad continuum spectrum at high energies in inelastic neutron scattering. The mechanism of spinon deconfinement results from the existence of fermion zero modes in single monopole potentials. Neel vectors can make a skyrmion configuration around a magnetic monopole of compact U(1) gauge fields. Remarkably, in the monopole-skyrmion composite potential the Dirac fermion is shown to have a zero mode. The emergence of the fermion zero mode forbids the condensation of monopoles, resulting in deconfinement of Dirac spinons in the quantum antiferromagnet.Comment: K. -S. Kim is much indebted to Dr. A. Tanaka who pointed out a mistake in association with the gradient expansion in Eq. (C3) and Eq. (C4

    Clinical assessment of gestational age in the newborn

    Get PDF
    The scoring method of Dubowitz et al. was used for the assessment of gestational age in 100 newborn Cape Colored infants. The accuracy of prediction of gestational age by this method was confirmed.Publishers' Versio

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    High resolution pixel detectors for e+e- linear colliders

    Get PDF
    The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199

    AGK Cutting Rules and Multiple Scattering in Hadronic Collisions

    Full text link
    We discuss the AGK rules for the exchange of an arbitrary number of reggeized gluons in perturbative QCD in the high energy limit. Results include the cancellation of corrections to single jet and double jet inclusive cross sections, both for hard and soft rescattering contributions.Comment: 31 pages, latex, 20 figure

    Inclusive 1-jet Production Cross Section at Small x in QCD: Multiple Interactions

    Full text link
    We study corrections due to two Pomeron exchanges to the inclusive 1-jet production cross section in the Regge limit of perturbative QCD for a finite number of colors. By considering deep inelastic scattering on a weakly bound two-nucleon system, we carefully follow the logic of the AGK cutting rules and show, for the single inclusive cross section, that, due to the reggeization of the gluon, modifications of the AGK cutting rules appear. As our main result, we investigate and calculate the jet production vertex in the presence of a two-Pomeron cut correction. Compared to previous studies, we find a novel structure of the jet vertex which has not been considered before. We discuss a few implications of this new piece.Comment: 42 pages, 22 figures, few references and comments added, to appear on JHE

    A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    Get PDF
    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors

    Quantization of the Chern-Simons Coupling Constant

    Get PDF
    We investigate the quantum consistency of p-form Maxwell-Chern-Simons electrodynamics in 3p+2 spacetime dimensions (for p odd). These are the dimensions where the Chern--Simons term is cubic, i.e., of the form FFA. For the theory to be consistent at the quantum level in the presence of magnetic and electric sources, we find that the Chern--Simons coupling constant must be quantized. We compare our results with the bosonic sector of eleven dimensional supergravity and find that the Chern--Simons coupling constant in that case takes its corresponding minimal allowed value.Comment: 15 pages, 1 figure, JHEP3.cls. Equation (8.6) corrected and perfect agreement with previous results is obtaine

    Microcrystalline Bi2ZnB2O7-polymer composites with silver nanoparticles as materials for laser operated devices

    Get PDF
    A novel type of composite for optoelectronic which is operated by second harmonic generation in the Bi2ZnB2O7 crystallites (with sizes varying within 1–30 Όm) and Ag nanoparticles (NP) embedded in PMMA polymer composites is proposed. The substantial influence of the Ag NP on the bicolor induced second harmonic generation was established. The phototreatment was performed by bicolor beams of nanosecond Nd:YAG laser (1,064/532 nm) at angles between the fundamental and photoinducing beams varying within the 19°–21° range. The studies of the corresponding dependences of the SHG during illumination by the two coherent beams at 1,064/532 nm showed a maximal enhancement of the output SHG for the Ag NP average sizes equal to about 40 nm. The role of the excited plasmons may be here crucial. Additionally the time shift between the fundamental and the doubled frequency beam maxima was found, which shows strong sensitivity to illumination. The established time shift is sensitive to the pumping power
    • 

    corecore