247 research outputs found

    Distinguishing academic science writing from humans or ChatGPT with over 99% accuracy using off-the-shelf machine learning tools

    Get PDF
    ChatGPT has enabled access to artificial intelligence (AI)-generated writing for the masses, initiating a culture shift in the way people work, learn, and write. The need to discriminate human writing from AI is now both critical and urgent. Addressing this need, we report a method for discriminating text generated by ChatGPT from (human) academic scientists, relying on prevalent and accessible supervised classification methods. The approach uses new features for discriminating (these) humans from AI; as examples, scientists write long paragraphs and have a penchant for equivocal language, frequently using words like “but,” “however,” and “although.” With a set of 20 features, we built a model that assigns the author, as human or AI, at over 99% accuracy. This strategy could be further adapted and developed by others with basic skills in supervised classification, enabling access to many highly accurate and targeted models for detecting AI usage in academic writing and beyond

    ChatGPT or academic scientist? Distinguishing authorship with over 99% accuracy using off-the-shelf machine learning tools

    Full text link
    ChatGPT has enabled access to AI-generated writing for the masses, and within just a few months, this product has disrupted the knowledge economy, initiating a culture shift in the way people work, learn, and write. The need to discriminate human writing from AI is now both critical and urgent, particularly in domains like higher education and academic writing, where AI had not been a significant threat or contributor to authorship. Addressing this need, we developed a method for discriminating text generated by ChatGPT from (human) academic scientists, relying on prevalent and accessible supervised classification methods. We focused on how a particular group of humans, academic scientists, write differently than ChatGPT, and this targeted approach led to the discovery of new features for discriminating (these) humans from AI; as examples, scientists write long paragraphs and have a penchant for equivocal language, frequently using words like but, however, and although. With a set of 20 features, including the aforementioned ones and others, we built a model that assigned the author, as human or AI, at well over 99% accuracy, resulting in 20 times fewer misclassified documents compared to the field-leading approach. This strategy for discriminating a particular set of humans writing from AI could be further adapted and developed by others with basic skills in supervised classification, enabling access to many highly accurate and targeted models for detecting AI usage in academic writing and beyond

    Alkaloid escholidine and its interaction with DNA structures

    Get PDF
    Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant

    Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes

    Get PDF
    The zebrafish is a powerful model organism to study the mechanisms governing transition metal ions within whole brain tissue. Zinc is one of the most abundant metal ions in the brain, playing a critical pathophysiological role in neurodegenerative diseases. The homeostasis of free, ionic zinc (Zn2+) is a key intersection point in many of these diseases, including Alzheimer’s disease and Parkinson’s disease. A Zn2+ imbalance can eventuate several disturbances that may lead to the development of neurodegenerative changes. Therefore, compact, reliable approaches that allow the optical detection of Zn2+ across the whole brain would contribute to our current understanding of the mechanisms that underlie neurological disease pathology. We developed an engineered fluorescence protein-based nanoprobe that can spatially and temporally resolve Zn2+ in living zebrafish brain tissue. The self-assembled engineered fluorescence protein on gold nanoparticles was shown to be confined to defined locations within the brain tissue, enabling site specific studies, compared to fluorescent protein-based molecular tools, which diffuse throughout the brain tissue. Two-photon excitation microscopy confirmed the physical and photometrical stability of these nanoprobes in living zebrafish (Danio rerio) brain tissue, while the addition of Zn2+ quenched the nanoprobe fluorescence. Combining orthogonal sensing methods with our engineered nanoprobes will enable the study of imbalances in homeostatic Zn2+ regulation. The proposed bionanoprobe system offers a versatile platform to couple metal ion specific linkers and contribute to the understanding of neurological diseases

    Teaching evidence-based practice (EBP) in nursing curricula in six European countries—A descriptive study

    Get PDF
    ©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in Nurse Education Today. To access the final edited and published work see https://doi.org/10.1016/j.nedt.2020.104561Background: Teaching evidence-based practice (EBP) in nursing education varies among nurse educators and universities. Lack of nurses' knowledge and skills are among the barriers commonly associated with the limited use of EBP in practice. Objectives: To describe the presence, characteristics and content of courses of EBP in nursing bachelor's, master's, and PhD programs in six European countries. Design: A descriptive study design was employed. Settings: The study was implemented as part of the EBP e-Toolkit Project as a strategic partnership of six European higher education institutions from six countries in the framework of the Erasmus+ Programme. Participants: Census sampling (N = 225) was used. A total of 162 (72%) faculties responded from the following countries: Spain (79), Italy (44), the Czech Republic (15), Poland (12), Greece (7), and Slovenia (5). Methods: Three structured instruments were developed by using the consensus development panel. The research was conducted from December 2018 to March 2019. For names of subjects, a manual narrative Template Analysis was used with open descriptive coding. Results: Subjects in “EBP in Nursing or Health Care” are included in 45 (29.2%) bachelor's programs, mostly worth 180 European Credit Transfer System (ECTS) credits, 30 (28%) master's, and 6 (40%) PhD programs. In bachelor's programs, an average of 134 h are spent teaching EBP steps, followed by 127 h in master's programs and 52 h in PhD programs. EBP subjects have different focuses: clear topics in EBP, development of research knowledge, awareness of the need for evidence-based clinical work, and understanding the needs of the profession. Conclusions: Teaching EBP is not yet sufficiently integrated into nursing curricula. For more efficient integration, guidelines on the standardization of teaching approaches and content have to be developed in all three cycles of higher education. Further research is needed on the implementation of teaching at master's and PhD levels of nursing curricul

    EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents

    Get PDF
    In the year 2010, effluents from 90 European waste water treatment plants (WWTPs) were collected and analysed in total for 160 organic chemicals and 20 inorganic trace elements. The analyses were complemented by applying also effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analysed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. The analytical work was performed in six European expert laboratories. This European-wide monitoring study on the occurrence of micropollutants in WWTP effluents represents the largest EU wide monitoring survey on WWTP effluents ever performed. It produced a comprehensive data set on many so far only locally investigated “emerging” compound classes including pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites) or industrial chemicals such as benzotriazoles (corrosion inhibitors), polycyclic musk fragrances, x-ray contrast agents, Gadolinium compounds, and siloxanes. The obtained results show the presence of 131 target organic compounds in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results obtained from 90 different European WWTPs allow the calculation of a European median level for the chemicals investigated. The most relevant compounds identified in the effluent water samples in terms of frecquency of detection, maximum, average and median concentration levels were Sucralose, Acesulfame K (artificial sweeteners), PFOA, PFHxA, PFHpA, PFOS (perfluoroalkyl substances), N,N’-Diethyltoluamide (DEET; insect repellent), Benzotriazoles (corrosion inhibitors), the pharmaceuticals Bisoprolol, Carbamazepine, Ciprofloxacine, Citaprolam, Clindamycine, Codeine, Diltiazem, Diphenhydramin, Eprosartan, Fexofenadine, Flecainide, Gemfibrozil, Fluconazole, Haloperidol, Ibersartan, Ibuprofen, Ketoprofen, Oxazepam, Risperidone, Sulfamethoxazole, Telmisartan, Tramadol, Trimethoprim, Venlafaxin, the organo-phosphate ester flame retardants Tri-iso-butylphosphate (TIBP), Tributylphosphate (TBP), Tris(2-chloroethyl)phosphate (TCEP), Tris(2-chloroisopropyl)phosphate (TCPP), Tris(2-butoxyethyl)phosphate (TDCP), Tris(2-butoxyethyl)phosphate (TBEP), Triphenyl-phosphate (TPP), 2-Ethylhexyldiphenyl-phosphate (EHDPP), the x-ray contrast media Amidotrizoic acid, Iohexol, Iopromid, Iomeprol, Iopamidol, the pesticides Terbutylazine, Terbutylazine-desethyl (metabolite), MCPA, Mecoprop, Diuron, Triclosan (antibacterial), and Gadolinium (from magnetic resonance imaging contrast media used in hospitals).JRC.H.1-Water Resource

    Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses

    Get PDF
    Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (Fv/Fm and QY_Lss), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance

    Long-term outcomes in patients with polyarticular juvenile idiopathic arthritis receiving adalimumab with or without methotrexate

    Get PDF
    Objectives Long-term safety and efficacy of adalimumab among patients with juvenile idiopathic arthritis (JIA) was evaluated through 6 years of treatment. Methods Children aged 4-17 years with polyarticular JIA were enrolled in a phase III, randomised-withdrawal, double-blind, placebo-controlled trial consisting of a 16-week open-label lead-in period, 32-week randomised double-blind period and 360-week long-term extension. Patients were stratified by baseline methotrexate use. Adverse events (AEs) were monitored, and efficacy assessments included JIA American College of Rheumatology (JIA ACR) 30%, 50%, 70% or 90% responses and the proportions of patients achieving 27-joint Juvenile Arthritis Disease Activity Score (JADAS27) low disease activity (LDA, = 6 continuous months) during the study. Attainment of JIA ACR 50 or higher and JADAS27 LDA or ID in the initial weeks were the best predictors of clinical remission. Mean JADAS27 decreased from baseline, 22.5 (n=170), to 2.5 (n=30) at week 312 (observed analysis). Conclusions Through 6 years of exposure, adalimumab was well tolerated with significant clinical response (up to clinical remission) and a relatively low retention rate
    corecore