875 research outputs found

    Evaluation of the Suitability of Intel Xeon Phi Clusters for the Simulation of Ultrasound Wave Propagation Using Pseudospectral Methods

    Get PDF
    The ability to perform large-scale ultrasound simulations using Fourier pseudospectral methods has generated significant interest in medical ultrasonics, including for treatment planning in therapeutic ultrasound and image reconstruction in photoacoustic tomography. However, the routine execution of such simulations is computationally very challenging. Nowadays, the trend in parallel computing is towards the use of accelerated clusters where computationally intensive parts are offloaded from processors to accelerators. During last five years, Intel has released two generations of Xeon Phi accelerators. The goal of this paper is to investigate the performance on both architectures with respect to current processors, and evaluate the suitability of accelerated clusters for the distributed simulation of ultrasound propagation using Fourier-based methods. The paper reveals that the former version of Xeon Phis, the Knight’s Corner architecture, suffers from several flaws that reduce the performance far below the Haswell processors. On the other hand, the second generation called Knight’s Landing shows very promising performance comparable with current processors

    Enhanced suppresion of localization in a continuous Random-Dimer Model

    Get PDF
    We consider a one-dimensional continuous (Kronig-Penney) extension of the (tight-binding) Random Dimer model of Dunlap et al. [Phys. Rev. Lett. 65, 88 (1990)]. We predict that the continuous model has infinitely many resonances (zeroes of the reflection coefficient) giving rise to extended states instead of the one resonance arising in the discrete version. We present exact, transfer-matrix numerical calculations supporting, both realizationwise and on the average, the conclusion that the model has a very large number of extended states.Comment: 10 pages, 3 Figures available on request, REVTeX 3.0, MA/UC3M/1/9

    The Heavy Photon Search beamline and its performance

    Full text link
    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+^+e−^- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4_4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μ\mum above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking

    Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution

    Full text link
    We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E. Schoell, S.H.L. Klapp, P. Hoeve

    The Heavy Photon Search Beamline and Its Performance

    Get PDF
    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05GeV and 2.3GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking

    Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators

    Get PDF
    The rapid development of novel procedures in medical ultrasonics, including treatment planning in therapeutic ultrasound and image reconstruction in photoacoustic tomography, leads to increasing demand for large-scale ultrasound simulations. However, routine execution of such simulations using traditional methods, e.g., finite difference time domain, is expensive and often considered intractable due to the computational and memory requirements. The k-space corrected pseudospectral time domain method used by the k-Wave toolbox allows for significant reductions in spatial and temporal grid resolution. These improvements are achieved at the cost of all-to-all communication, which are inherent to the multi-dimensional fast Fourier transforms. To improve data locality, reduce communication and allow efficient use of accelerators, we recently implemented a domain decomposition technique based on a local Fourier basis. In this paper, we investigate whether it is feasible to run the distributed k-Wave implementation on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight’s Corner) accelerators. The results show the immaturity of the KNC platform with issues ranging from limited support of Infiniband and LustreFS in Intel MPI on this platform to poor performance of 3D FFTs achieved by Intel MKL on the KNC architecture. Yet, we show that it is possible to achieve strong and weak scaling comparable to CPU-only platforms albeit with the runtime 1.8× to 4.3× longer. However, the accounting policy for Salomon’s accelerators is far more favorable and thus their employment reduces the computational cost significantly

    Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease

    Get PDF
    We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4′,5′-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual

    Formula for proton-nucleus reaction cross section at intermediate energies and its application

    Full text link
    We construct a formula for proton-nucleus total reaction cross section as a function of the mass and neutron excess of the target nucleus and the proton incident energy. We deduce the dependence of the cross section on the mass number and the proton incident energy from a simple argument involving the proton optical depth within the framework of a black sphere approximation of nuclei, while we describe the neutron excess dependence by introducing the density derivative of the symmetry energy, L, on the basis of a radius formula constructed from macroscopic nuclear models. We find that the cross section formula can reproduce the energy dependence of the cross section measured for stable nuclei without introducing any adjustable energy dependent parameter. We finally discuss whether or not the reaction cross section is affected by an extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference
    • …
    corecore